
Faster Secure Two-Party Computation with Less Memory

Wilko Henecka
School of Mathematical Sciences

University of Adelaide
Australia

wilko.henecka@adelaide.edu.au

Thomas Schneider
European Center for Security and Privacy by

Design (EC SPRIDE)
Technische Universität Darmstadt

Germany
thomas.schneider@ec-spride.de

ABSTRACT
Secure two-party computation is used as the basis for a large
variety of privacy-preserving protocols, but often concerns
about the low performance hinder the move away from non-
private solutions.

In this paper we present an improved implementation of
Yao’s garbled circuit protocol in the semi-honest adversaries
setting which is up to 10 times faster than previous imple-
mentations. Our improvements include (1) the first multi-
threaded implementation of the base oblivious transfers re-
sulting in a speedup of a factor of two, (2) techniques for
minimizing the memory footprint during oblivious trans-
fer extensions and processing of circuits, (3) compilation
of sub-circuits into files, and (4) caching of circuit descrip-
tions and network packets. We implement improved cir-
cuit building blocks from the literature and present for the
first time performance results for secure evaluation of the
ultra-lightweight block cipher PRESENT within 7 ms on-
line time.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls; C.2.4 [Computer-Communica–
tion Networks]: Distributed Systems—distributed appli-
cations

General Terms
Security, Algorithms

Keywords
Secure Computation, Garbled Circuits, Efficiency, Privacy

1. INTRODUCTION
Secure two-party computation, often called secure func-

tion evaluation (SFE), allows two mutually mistrusting par-
ties to compute an arbitrary function on their private in-
puts without revealing any information about their inputs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

beyond the function’s output. Although the real-world de-
ployment of SFE was believed to be very expensive for a
relatively long time, the cost of SFE has been dramatically
reduced in the recent years thanks to many algorithmic im-
provements and automatic tools, as well as faster comput-
ing platforms and communication networks. SFE enables a
large variety of privacy-preserving applications such as elec-
tronic auctions [NPS99], data mining [LP09b], or biometric
identification [BG11,HMEK11], to name a few.

Although other approaches exist, most practical appli-
cations of SFE, including the ones listed above, are based
on Yao’s garbled circuits technique [Yao86] for which many
improvements have been proposed (we give a summary in
§2.1). In this paper we focus on secure two-party compu-
tation based on garbled circuits in the semi-honest adver-
sary model. In this model, the adversary is assumed to be
“honest-but-curious”, i.e., he honestly follows the protocol
specification, but tries to learn additional information from
the messages seen. Although this adversary model is very
weak, it allows to construct highly efficient protocols for
many application scenarios, e.g., for constructing privacy-
preserving protocols that protect against attacks by insiders
or future break-ins. We strongly believe that pushing the
performance limits of such protocols is essential in order to
promote secure computation as conceivable alternative to
using protocols without provable privacy guarantees.

In order to make SFE usable in practice, several frame-
works with different properties have been proposed as sum-
marized in Table 1. These frameworks allow an applica-
tion developer to describe the functionality that needs to be
computed securely on a high level and abstract from the de-
tails of the underlying protocol. Fairplay [MNPS04,BNP08]
allows to describe the functionality to be computed in a
high-level language which is compiled into a boolean cir-
cuit in an offline pre-computation phase. This compilation
allows to perform global optimizations such as eliminating
dead code. Subsequently, TASTY [HKS+10] partitioned the
garbled circuit protocol such that most expensive opera-
tions (w.r.t. both, communication and computation) are
performed in the pre-computation phase. To reduce the
memory footprint, VMCrypt [Mal11] introduced the con-
cept of streaming, i.e., the garbled circuit is generated gate
by gate and directly streamed into the network. To also re-
duce the memory footprint for the circuit, the programmer
can compose the circuit by dynamically constructing and de-
constructing sub-circuits. However, VMCrypt instantiates a
new object for each gate such that its performance suffers
from the additional overhead of garbage collection. Also in

437

Table 1: Frameworks for GC-based secure two-party computation in the semi-honest adversaries setting.
Framework Compilation Streaming Memory and Additional Overhead During Online Phase
Fairplay [MNPS04,BNP08] Yes No O(circuit size)
TASTY [HKS+10] Yes No O(circuit size)
VMCrypt [Mal11] No Yes depends on circuit, garbage collection
FastGC [HEKM11] No Yes O(max(size of sub-circuit)), garbage collection
GCParser [MZE12] Yes Yes O(max(size of sub-circuit)), garbage collection
[KSS12] (malicious, cluster) Yes Yes O(maximum working set(circuit)), usage counter
This Work Yes Yes O(max(max. working set(sub-circuit))), no online overhead

FastGC [HEKM11] the circuit is not compiled, but com-
posed from sub-circuits and dynamically generated within a
library. Also here, a new object is created for each gate of
the sub-circuit which could be freed by the garbage collec-
tor when not used any more. GCParser [MZE12] extended
the FastGC framework to read in a file which describes the
way pre-defined sub-circuits should be put together; it also
requires memory linear in the size of the sub-circuits. Most
recently, the framework of [KSS12] implemented GC-based
secure function evaluation in the malicious setting by ex-
ploiting the high degree of parallelism available in a cluster.
In this framework, each gate carries a usage counter such
that memory can be freed after the last use of the gate, but
this requires additional overhead in the online phase.

1.1 Outline and Our Contributions
After giving related works in §1.2, an overview on Yao’s

garbled circuit protocol in §2.1.1, and a minor remark on
the choice of security parameters in §2.2, we present the
following contributions:

In §3 we present several optimizations that result in lower
memory consumption and significantly better performance
compared to previous frameworks. More specifically, we im-
prove the implementation of base oblivious transfers using
multi-threading (§3.1), reduce the memory consumption of
oblivious transfer extensions (§3.2), compile sub-circuits into
files (§3.4), and cache circuit descriptions and the communi-
cation (§3.5). In §3.3 we enhance streaming by considering
both, the memory footprint of the circuit and the garbled
circuit with no additional overhead in the online phase. As
described in §1 and summarized in Table 1, most previous
frameworks have a memory consumption which is linear in
the size of the evaluated circuit. As shown in [JKSS10b]
and implemented in the framework of [KSS12], it is suffi-
cient to just hold the intermediate values in memory that
are needed later on, called the working set. For example,
the maximum size of the working set of a Karatsuba multi-
plication of two 128 bit values is 1,074 whereas the circuit
has 57,000 gates. In VMCrypt [Mal11], the needed memory
depends on the way a programmer creates and decorates
circuit components, and the framework of [KSS12] requires
additional overhead in the online phase to manage a us-
age counter and free unused memory (see §3.3 for details).
The memory consumption of our engine for simultaneously
streaming circuits and garbled circuits depends only on the
maximum size of the working set with no additional over-
head in the online phase.

In §4 we demonstrate that our implementation is sub-
stantially more efficient than previous frameworks. As ap-
plications we consider secure evaluation of the Hamming
distance, fast multiplication, and computing the minimum.

Moreover, we give performance results on securely comput-
ing the AES block cipher and for the first time on secure
evaluation of the ultra-lightweight block cipher PRESENT.

As many previous frameworks do, we provide the source
code of our implementation as open source software to foster
future works and allow a fair performance comparison. The
code is available for download at
http://code.google.com/p/me-sfe/.

1.2 Related Works
Faster secure two-party computation using garbled cir-

cuits (FastGC) [HEKM11] is the first software implementa-
tion of streamed garbled circuits. As optimization, FastGC
implements the optimization of inputs that depend only on
one party as described in [PSS09, Ker11]. The following
applications are implemented within FastGC: AES, Ham-
ming distance, and Levenstein / Smith-Waterman distance
with applications in privacy-preserving genome and protein
alignment. Subsequently, the FastGC framework was used
for various other applications, including privacy-preserving
biometric identification [HMEK11] and privacy-preserving
set intersection [HEK12]. The FastGC framework was also
extended to achieve stronger security guarantees [HKE12],
and adapted for privacy-preserving applications on smart-
phones [HCE11a, HCE11b]. These and future applications
of the FastGC framework (e.g., by using this framework for
iris and fingerprint identification [BG11]) benefit from our
improvements.

Many application scenarios require a low memory foot-
print, e.g., privacy-preserving applications on smartphones
[HCE11a,HCE11b], generating garbled circuits in resource-
restricted trusted hardware [JKSS10a], evaluating garbled
circuits with a hardware accelerator [JKSS10b], or securely
evaluating large functionalities in cloud computing scenar-
ios [BNSS11].

Frameworks for secure two-party computation in the semi-
honest adversaries setting can be classified into the tradi-
tional compilation paradigm, where the function to be com-
puted is first compiled and the on-the-fly paradigm that
generates circuits gate by gate from a library. The compi-
lation paradigm is used in Fairplay [MNPS04,BNP08] and
TASTY [HKS+10]. The on-the-fly paradigm is used in the
FastGC framework [HMEK11] and VMCrypt [Mal11]. We
provide the best of both worlds by compiling and optimiz-
ing sub-circuits once and dynamically composing these sub-
circuits on-the-fly.

A compilation technique for memory-efficient on-the-fly
generation of circuits from Fairplay’s high-level description
language was proposed in [MLB12]. Alternatively, circuits
can also be compiled from ANSI C programs as shown in
[HFKV12]. The FastGC framework [HEKM11] was recently

438

http://code.google.com/p/me-sfe/

extended to read in a description of how circuits are com-
posed from hard-coded circuit building blocks [MZE12].
However, these techniques do not minimize the amount of
memory needed during secure evaluation of the circuit.

A large-scale garbled circuits-based framework for secure
computations with security against stronger active (mali-
cious) adversaries was presented recently in [KSS12]. This
framework uses the compilation paradigm and exploits the
high level of parallelism available in grid computing infras-
tructures by running multiple instances of a garbled circuit
protocol in parallel – one on each machine. We extend their
ideas for memory-efficient secure evaluation of garbled cir-
cuits and use multi-threading within a single instance of the
garbled circuit protocol. For completeness we note that an
alternative approach to practical actively secure secure two-
party computations is [NNOB12] which is based on OT ex-
tensions instead of garbled circuits.

2. PRELIMINARIES

2.1 Yao’s Garbled Circuit Protocol
In the following we give a brief summary of Yao’s garbled

circuit protocol, its optimizations, and oblivious transfer.
For a more detailed description we refer to [Sch12, Chap-
ter 2] and for a proof of security to [LP09a].

2.1.1 Yao’s Garbled Circuit Protocol
Yao’s garbled circuit protocol [Yao86] allows two parties,

a server and a client, to jointly compute a function f repre-
sented as boolean circuit on their respective private inputs
x and y. On a very high level, the server (sometimes called
creator) creates an encrypted, called garbled, version of f
which is then sent to the client (sometimes called evaluator)
who evaluates the function under encryption. To encrypt the
function, for each wire of f , the server assigns two random-
looking wire labels that correspond to the values 0 and 1,
respectively. Afterwards, the server obliviously sends ex-
actly those wire labels to the client that correspond to their
inputs. For client’s inputs this is done with a sub-protocol,
called oblivious transfer, such that the server does not learn
the client’s inputs (see below for details). Additionally, for
each gate Gi of f , the server creates and sends to the client a
garbled table Ti with the following property: given the wire
labels for Gi’s inputs, Ti allows to recover only the wire label
of the corresponding output of Gi, but nothing else. Now,
the client can use the wire labels of the inputs together with
the garbled tables Ti to evaluate the garbled circuit gate by
gate and obtains the labels of the output wires. For these
output labels (and only for them) the client obtains map-
pings to the plain values 0 and 1 from the server which allow
to recover f(x, y).

The following optimizations of garbled circuits and obliv-
ious transfer are used in today’s most efficient implementa-
tions of Yao’s protocol, including [HKS+10,BG11,HEKM11,
Mal11,KSS12] and our implementation.

2.1.2 Garbled Circuit Optimizations
The point-and-permute technique [NPS99] represents each

wire label as a symmetric t-bit key and a permutation bit π,
where t is a symmetric security parameter. The permuta-
tion bits of a gate’s input wires are used as index to denote
which table entry needs to be decrypted. The free XOR
technique [KS08] allows to compute garbled linear gates,

i.e., XOR and XNOR gates, without communication (no
garbled table is needed) and only negligible computation.
Thus, the dominating factor for the complexity of a circuit
is the number of non-linear gates. Further, the garbled row
reduction technique [NPS99,PSSW09] allows to reduce the
garbled table by one entry.

2.1.3 Oblivious Transfer
In m-parallel Oblivious Transfer (OT) of �-bit strings, de-

noted as OTm
� , the chooser inputs a vector of choice bits ri,

i = 1 . . .m and the sender inputs a vector of pairs of �-bit
strings (x0, x1)i, i = 1 . . . n. At the end of the protocol, the
chooser learns the selected strings xri,i, but nothing about
the other strings x1−ri,i whereas the sender learns nothing
about the choices ri.

In Yao’s Garbled Circuit protocol � = t+1, whereas m cor-
responds to the number of input bits provided by the client
which can be large. Using OT extensions of [IKNP03] it is
possible to reduce a large number of OTs to a small number
of only k OTs, where k is a security parameter. These re-
maining k base OTs are implemented with an efficient OT
protocol which requires O(k) public-key operations, e.g., the
OT protocol of [NP01].

In §3.1 we give implementation improvements for the base
OTs of [NP01] and in §3.2 we show how the OT extension
of [IKNP03] can be implemented with low memory footprint.

2.2 Minor Remark on the Choice of Security
Parameters

As described in [HEKM11, Sect. 3.4], the implementa-
tion of FastGC uses SHA-1 as cryptographic hash func-
tion to encrypt the output wire labels of non-linear gates.
Hence, the maximum security level that can be achieved is
t = 80 bits. However, in the most recent implementation of
FastGC [HEKM11] (version 0.1.1 released August 9, 2011),
the last bit of the 80 bit wire labels is used as permuta-
tion bit for the point-and-permute technique of [NPS99] (cf.
§2.1.2). As this permutation bit is known to the evaluator,
the achieved symmetric security level is only 79 bits, but
not 80 bits as stated in their paper. To correct this, we set
Wire.labelBitLength=81 (actually we use 88 as internally a
byte-oriented representation is used) to achieve a symmetric
security level of exactly 80 bits. The longer wire labels result
in a slight increase of communication. For the OT protocol
of [NP01], implemented over FP with a generator of order
q, we use |p| = 1024 and |q| = 160 as these correspond to
the current NIST recommendations for a symmetric security
level of 80 bits.1

3. FASTER SECURE EVALUATION OF
GARBLED CIRCUITS

We optimize several aspects of the FastGC framework
[HEKM11] as described in the following.

We emphasize that our optimizations do not modify the
underlying cryptographic protocols, but only the way they
are implemented. Therefore, and because we work in the
semi-honest setting, the proofs of security of the original
protocols still hold for our optimizations.

1see http://keylength.com

439

http://keylength.com

3.1 Improved Base OTs
In order to improve the performance of the k base OTs

with the OT protocol of [NP01], we split up the computa-
tionally intensive public key operations into multiple threads
such that each of the N threads performs k/N base OTs (in-
dependent of each other). Furthermore, we tried to imple-
ment the base OTs over an elliptic curve instead of over FP

(the latter was used in the implementation of [HEKM11]).
This resulted in a reduction of the communication complex-
ity, but unfortunately no better runtimes. We assume that
this is due to the additional overhead introduced by the
Java VM. Our performance benchmarks for the improved
base OT implementations are given in §4.1.

3.2 Extending OTs with Low Memory Foot-
print

A large number of m parallel OTs of �-bit strings, OTm
�

can be reduced to a small number of only k OTs of k-bit
strings, OTk

k, using OT extensions of [IKNP03] as imple-
mented in [HEKM11]. The original protocol of [IKNP03]
needs beyond the messages of the base OTs only two mes-
sages, but memory linear in m.

We reduce the memory requirement of this protocol by
re-ordering its messages as follows: The OT extension con-
struction of [IKNP03] proceeds in two steps: First, the large
number of m parallel OTs of short �-bit strings are reduced
to k parallel OTs of long m-bit strings, cf. [IKNP03, Fig. 1].
These OTs are implemented using k parallel OTs of short k-
bit keys that are then stretched into longer m-bit masks us-
ing a pseudo-random generator (PRG), cf. [IKNP03, Fig. 3].

A very efficient and standard way to implement a PRG is
to successively apply a pseudo-random permutation (PRP)
on a counter, i.e., PRG(k) = PRPk(0)||PRPk(1)|| In
practice, the PRP can be instantiated with a block cipher
which operates on blocks of M bits, e.g., in our implemen-
tation we use AES-128 with M = 128. Now, in order to re-
duce the memory footprint, the OT extension construction
of [IKNP03] can easily be split into smaller blocks where
each block performs M parallel OTs. The overall protocol
is shown in Fig. 1. W.l.o.g. and to simplify presentation we
assume that m is a multiple of the block size, m = BM (oth-
erwise, the last messages are shorter) and that logB ≤ M .
T denotes an M × k bit matrix, Ti its i-th column and
Tj its j-th row. G : {0, 1}M × {0, 1}k → {0, 1}M is a PRP;

H : {0, 1}�logm�×{0, 1}k → {0, 1}� is a random oracle which
can be implemented using a cryptographic hash function (in
our implementation we use SHA-1).

Overall, our modified protocol can be seen as operating
on a stream of data which is processed in chunks of size M .

Security and Correctness. The only modification that we
applied to the original construction of [IKNP03] is that we
re-order the messages sent into B rounds of communication.
For semi-honest parties, this does not reveal any additional
information. Therefore, the correctness and security of our
optimized protocol in the semi-honest setting directly follows
from the correctness and security of the original construction
as proven in [IKNP03].

Performance. The computation and communication com-
plexity of our protocol is exactly the same as that of the
original construction of [IKNP03]. In contrast to the im-

Figure 1: Extension of OTm
� with low memory foot-

print. W.l.o.g. m = BM for B blocks of size M . G
is a pseudo-random permutation and H is a random
oracle.

plementation in [HEKM11] which has a constant number of
communication rounds but requires memory linear in the to-
tal number of OTs m, the memory consumption of our pro-
tocol is constant (for fixed block size M), but requires m/M
rounds of communication. We give performance benchmarks
for the improved OT extensions in §4.1.

3.3 Streaming Circuits and Garbled Circuits
with Low Memory Footprint

As described in §1 and §1.2, previous frameworks for se-
cure two-party computation in the semi-honest adversaries
setting store the outgoing wire labels of each gate in memory
and hence require memory linear in the size of the evaluated
circuit. More recent frameworks [Mal11,HEKM11,MZE12]
require memory only linear in the size of the sub-circuits,
but these frameworks suffer from the low performance of
memory management of many small objects (one object for
each gate) and garbage collection.

During creation and evaluation of a (sub) circuit, only
those wires need to be held in memory that are used in the
future, i.e., are either an output wire of the circuit or used
as input wires into a later gate. This set of wires is called
the working set. Thus, the minimum size of the memory
required to compute the circuit is defined by the maximum
working set. As described and implemented in [KSS12], one
strategy to keep track of the working set is to annotate to
each wire a usage counter that is decremented on each use.
When the counter reaches zero, the wire is deleted from the
memory. This is similar to the way sub-circuits are dynam-
ically constructed and deconstructed in VMCrypt [Mal11]
and impedes additional overhead in the online phase.

We use a different approach where we shift the manage-
ment of the working set from the online phase to the com-
pilation phase in order to keep the online phase as lean as
possible. In particular, the online phase of our approach
neither requires a usage counter nor to allocate and later on
free memory for each gate. During the compilation phase,
the compiler determines the maximum size S of the working
set and stores this along with the circuit description. The
compiler allocates a slot ID (starting from 0) to each input
wire of the circuit. Then, the circuit description is generated

440

as an ordered list of gates where each gate is described as a
tuple (output slot ID; input slot IDs; truth table). When-
ever a slot ID is used for the last time, it is added to a list of
available slot IDs and can be re-used as the output slot ID
of a later gate. Note that all this is done in the offline (com-
pilation) phase. In the online phase, an array with S slots
is allocated where each slot can hold a wire label. Then, the
gates are read one-by-one from the circuit description: the
gate’s input labels are taken from the slots given by its input
slot IDs and the output label is stored to the slot specified
by the gate’s output slot ID. We internally keep a counter
of the gate ID which is used to construct the garbled tables.

We emphasize that the compilation of a function has to
be done just once, since the resulting circuit is independent
from the inputs and can therefore be reused.

In future work, the compiler can be extended to re-arrange
the order of the gates in order to reduce the size of the
working set as described in [JKSS10b]. However, as noted
in [KSS12], determining a topologic order of the circuit with
the minimum size of the working set is known to be an NP-
complete problem.

We further note that in principle generation of garbled
circuits can be implemented such that the amount of mem-
ory is constant by pseudo-randomly deriving the wire labels
from the gate ID as described in [JKSS10a]. However, this
is essentially a time-memory tradeoff and cannot easily be
combined with the highly efficient free XOR technique.

3.4 Sub-Circuit Compilation
A design goal of our framework was to keep the online

phase of the circuit evaluation as lean as possible. Due to the
topological ordering of the circuits the engine never has to
hold more than one gate description in memory. Once a gate
is processed, the information can be discarded (except for
the intermediate wire labels). The circuit evaluation engine
reads the circuit description from a file with a format similar
to Fairplay. In order to re-use sub-circuits we use slot IDs
to index the wires in the sub-circuit. A slot ID can be seen
as a virtual register that can hold a wire label and can also
be re-used. For the gate ID, which needs to be unique in
the overall circuit as it is used for encrypting the non-linear
gates, we use a counter which is incremented for each non-
linear gate. A gate is described by its output slot ID, its
input slot IDs, and its truth-table. An example is shown in
Fig. 2 which describes the one-bit comparison circuit from
[KSS09]. We also support a binary file format which is more
efficient to read by our engine.

The circuit to be computed often consists of several calls
to the same sub-function. For instance, AES consists of 160
S-Box, 10 AddRoundKey, and 9 MixColumns calls. Our
framework allows for sub-circuits to be reused in a similar
fashion like [HEKM11], except that we do not instantiate a
new gate object in each invocation of the sub-circuit. Over-
all, for AES we do not create the entire circuit with 24,720
gates, but only 3 sub-circuits for the sub-functions listed
above with a total of just 803 gates. As in our implemen-
tation the creation of the gate ID is decoupled from the
circuit definition, we ensure that in every reuse of a sub-
circuit all gates have a unique gate ID, and therefore the se-
curity of the underlying garbled circuit protocol, as proven
in [LP09a,PSSW09], still holds.

We provide a compiler that converts circuits described in
the format of [HEKM11] into our format.

Figure 2: A one-bit comparison circuit. Comments
(from // on) are not part of the input.

inputsCreator: 0 // creator’s input is r0
inputsEvaluator: 1 // evaluator’s input is r1
outputsCreator:
outputsEvaluator: 0 // evaluator’s output is r0
numberOfRegisters: 2
numberOfGates: 2
0;1,0;1 // r0 = r1 and r0
0;1,0;6 // r0 = r1 xor r0

3.5 Caching of Circuits and Communication
In order to improve the performance of garbled circuits

evaluation we cache both, circuit descriptions and network
packets during garbled circuit streaming resulting in a cor-
responding time-memory trade-off as described next.

In some circuits, the same sub-circuits are reused many
times (cf. §3.4). Instead of reading the description of the
sub-circuit from a file on every instantiation (or re-gener–
ating it as implemented in previous frameworks), we op-
tionally cache its description once in memory. The memory
consumption is 32 bytes per cached gate.

Sending the creator’s input wire labels and the garbled
tables straight after creation (as implemented in [HEKM11])
leads to an inefficient use of the network because of small
packet sizes and an unnecessary large number of packets.
By using fixed sized buffers on the communication channels
we greatly improve the performance of the network usage.

In our benchmarks in §4 we use circuit caching and net-
work buffers of size 9,000 byte.

4. PERFORMANCE BENCHMARKS AND
APPLICATIONS

In the following we show that the implementation of our
improvements described in the previous section results in
substantially better performance than previous frameworks.

4.1 Oblivious Transfers
The following performance benchmarks were performed

on two Apple computers with a dual core processor each
(Intel Core i5 2.5GHz and Core i7 1.8GHz) running MacOS
X 10.7.4 and Java 1.6.0 33, connected via 802.11n WIFI.

We observed that because of the JAVA just in time com-
piler, the runtime decreases in the first few runs due to com-
piler optimizations. Therefore, we executed each protocol
1,000 times and took the average. All benchmarks were ex-
ecuted with the default JAVA VM parameter.

The performance of our improved implementation for the
base OTs (cf. §3.1) in comparison with the original imple-
mentation of [HEKM11] run in exactly the same setting is
shown in Table 2. Due to the additional overhead for thread
management, our multi-threaded implementation with one
thread is slightly slower than the single-threaded one. How-
ever, when running with 4 threads on the dual core pro-
cessors, our multi-threaded base OTs take 0.15 seconds, an
improvement by factor 2 over the single-threaded version.
We emphasize that we use multi-threading only for the base
OTs and that for small circuit sizes this time is much longer
than the online time (cf. Table 3).

441

Table 2: Comparison of base OT implementations.
single threaded time

over FP [HEKM11] 286 ms (100%)
over EC 560 ms (196%)

multi threaded (over FP) time

1 thread 314 ms (110%)
2 threads 182 ms (64%)
4 threads 153 ms (53%)

For the OT extensions (independent of the performance
of the base OTs), our improved implementation of the pro-
tocol of §3.2 can evaluate about 400,000 OTs per second,
i.e., 2.5μs per OT, a factor 6 improvement over the 15μs
reported in [HEKM11] (which used faster Intel Core Duos
E8400 3GHz and a faster local area network).2 We em-
phasize that this optimization is very beneficial for applica-
tions where the circuit has many inputs, e.g., for converting
from homomorphic encryption to garbled circuits and sub-
sequently finding the minimum, a very common building
block in privacy-preserving protocols for biometric match-
ing [HKS+10,HMEK11,BG11] (cf. the example we bench-
mark in §4.2.4).

4.2 Online Time
The following benchmarks were executed on a single iMac

A1311 with an Intel Core i3 3GHz processor using the loop-
back network interface. We measured the online time, that
is the time from after the connection is established and the
base OTs are done until the end of the protocol. This time
includes the time for the OT extensions and streaming, i.e.,
creating, transferring, and evaluating, the garbled circuit.

Our improved implementation evaluates about 500,000
non-linear gates per second (2μs per gate) on the same host
(setting as described above) and about 350,000 non-linear
gates per second (3μs per gate) over WLAN (setting as de-
scribed in §4.1). In contrast, [HEKM11] reported 96,000
non-linear gates per second (10μs per gate) over a LAN.3

In the following we show that the online time of our frame-
work when evaluated on the same host as described above
(i.e., assuming an ideal network) is up to 10 times faster than
that of previous frameworks; we give a comparison for small
circuits with FastGC [HEKM11] in §4.2.1 and §4.2.2 (using
optimized circuit constructions), for medium size circuits
with FastGC [HEKM11] and TASTY [HKS+10] in §4.2.3,
and for large circuits with FastGC [HEKM11] and VMCrypt
in §4.2.4. The comparison between our implementation and
FastGC [HEKM11], both executed on exactly the same ma-
chine, is summarized in Table 3.

4.2.1 Hamming Weight
Some applications, e.g., privacy-preserving face recogni-

tion [OPJM10], require to securely compute the Hamming

distance dH(�a,�b) between two �-bit strings �a, �b. As shown

2For completeness we note that [NNOB12] claim an actively-
secure OT extension that can be implemented at about
500,000 OTs per second based on unpublished optimizations
(cf. Appendix A and E in the full version of their paper).
3In the malicious setting, [KSS09] report 82,000 non-linear
gates per second (12μs per gate) on a cluster and [NNOB12]
20,000 gates per second (50μs per gate) over an intranet.

in [HEKM11], this can be done by XORing �a and �b bitwise
and computing its Hamming weight h(·), i.e., the number of

“ones” in its binary representation: dH(�a,�b) = h(�a⊕�b).
Original Hamming Circuit. The authors of [HEKM11]

propose to use a tree of addition circuits which requires ap-

proximately
∑�log2 ��

i=0 � i
2i

= �(2 − �log2 ��+2

2�log2 ��) ≈ 2� − log2 �
non-linear gates. For the example of � = 900 given in their
paper this yields approximately 1,790 non-linear gates.

Improved Hamming Circuit. We use the optimized Ham-
ming weight circuit of [BP06] with size � − h(�) non-linear
gates, where h(�) is the Hamming weight of �. For � = 900
this yields 900 − h((1110000100)2) = 896 non-linear gates.

The resulting circuit sizes and performance results are
shown in Table 3. Put together, the improved Hamming
circuit together with our improved implementation is more
than 10 times faster than the original Hamming circuit eval-
uated with FastGC [HEKM11] (6 w/o circuit optimization).

4.2.2 Block Ciphers
Oblivious evaluation of a block cipher where one party

provides the key and the other party provides the mes-
sage and obtains the ciphertext has many applications as
summarized in [PSSW09]. These include oblivious pseudo-
random functions (OPRFs) with applications to secure key-
word searching [FIPR05] or secure set intersection [JL09],
blind MACs, and blind encryption.

As noted in [HEKM11], the key schedule of the block ci-
pher does not need to be computed securely within the gar-
bled circuit. Instead, the party that knows the key can run
the key schedule on the plain key data to expand it and
provide the expanded key as input to the protocol.

AES. Secure evaluation of AES is commonly used as per-
formance benchmark for secure computation frameworks,
e.g., [PSSW09,HKS+10,HEKM11,KSS12].

Original AES Circuit. Excluding the key schedule, AES-
128 consists of 10 rounds where in each round 16 S-boxes
are evaluated. As shown in [HEKM11, Sect. 7], all other
operations, e.g., MixColumns and AddRoundKey, can be
performed using only free XOR gates. The S-box presented
in [HEKM11] has 58 non-linear gates resulting in 58·10·16 =
9,280 non-linear gates for AES.

Improved AES Circuit. Instead, we implemented the S-
box of [BP10] which consists of only 32 non-linear gates
resulting in a total of 32 · 10 · 16 = 5,120 non-linear gates for
AES. We note that the AES circuit implemented in [KSS12]
uses the same S-box and has 9,100 non-linear gates, but
including the key schedule.

PRESENT. For the applications mentioned above, it might
be sufficient to use a block cipher that does not provide
the strong security guarantees of AES, but is more effi-
cient to evaluate. An example for such an ultra-lightweight
block cipher is PRESENT with a block length of 64 bit and
an 80 bit key. PRESENT consists of 31 rounds where in
each round a 4-bit S-box is applied 16 times in parallel.
We implemented PRESENT using the S-box representation
of [CHM11,CHM12] which has 4 non-linear gates. Overall,
PRESENT requires 31 · 16 · 4 = 1,984 non-linear gates.

442

Table 3: Comparison of circuit sizes and performance when run on the same machine.
Circuit non-linear gates FastGC [HEKM11] Our Implementation

§4.2.1 Original Hamming 1,793 (100%) 64 ms (100%) 8 ms (13%)
Improved Hamming 896 (44%) 39 ms (61%) 6 ms (9%)

§4.2.2 Original AES 9,280 (100%) 204 ms (100%) 27 ms (13%)
Improved AES 5,120 (55%) 113 ms (55%) 16 ms (8%)
PRESENT 1,984 (21%) 53 ms (26%) 7 ms (3%)

§4.2.3 Fast Multiplication 17,973 499 ms (100%) 45 ms (9%)

§4.2.4 Minimum 40,000,000 1,250 s (100%)
a) 138 s (11%)
b) 272 s (22%)
c) 128 s (10%)

Comparison. The size of the AES and PRESENT circuits
and their performance comparison are shown in Table 3.
The improved AES circuit evaluated with our improved im-
plementation is about 12 times faster than the original AES
circuit evaluated on the FastGC engine [HEKM11]. Due to
its smaller gate count, PRESENT is almost 4 times faster
than the original AES circuit and twice as fast as the im-
proved AES circuit.

4.2.3 Fast Multiplication
To compare our implementation with FastGC [HEKM11]

and TASTY [HKS+10] for circuits of medium size, we im-
plemented secure multiplication using the fast multiplication
method of Karatsuba and Ofman [KO62]. For multiplication
of two 128 bit numbers, this circuit has 17,973 non-linear
gates and took 45 ms online time to evaluate in our opti-
mized framework.

The same circuit implemented in FastGC [HEKM11] and
run on the same machine took 499 ms, i.e., more than 10
times longer. This result supports the fact that the improved
online time of our implementation, in particular for medium
size circuits, is substantially faster than that of [HEKM11],
even without circuit-specific optimizations.

According to [HKS+10, Fig. 7], TASTY takes approxi-
mately 4,000 ms setup time and 700 ms online time to eval-
uate the same circuit on two desktop PCs with Intel Core
2 Duo CPU (E6850) running at 3GHz connected via Gi-
gabit Ethernet. We emphasize that TASTY doesn’t use
streaming, but pre-computes the OT extensions and gen-
erates and transfers the garbled circuit already in the setup
phase; hence, the online time in TASTY consists only of the
very efficient online OTs of Beaver’s construction [Bea95]
and garbled circuit evaluation whereas our online time in-
cludes the computationally more expensive OT extensions
and creating and transferring the garbled circuit which is
minimized due to streaming. Overall, for this application,
the online time of our improved framework is faster than
TASTY by a factor of about 16 times, whereas our setup
time is as low as 153 ms for the base OTs (cf. Table 2), i.e.,
26 times faster.

4.2.4 Minimum
To compare our implementation with FastGC [HEKM11]

and VMCrypt [Mal11] for circuits of large size, we imple-
mented a circuit to compute the minimum of 106 20-bit
numbers (half of the numbers are input by the server and
the other half by the client) using a circuit similar to the one
described in [Mal11, Fig. 2]. We use the OT extension with

low memory footprint described in §3.2 such that the total
memory consumption stays linear in the size of the subset
and not in the order of the total number of inputs. The
overall circuit has 2 · (106 − 1) · 20 ≈ 40,000,000 non-linear
gates. There are different approaches to compute this func-
tionality which demonstrate the flexibility of our system that
allows to choose a trade-off between execution time (shown
in Table 3) and memory consumption (shown in Table 4):

a) The first solution has the lowest OT overhead but re-
quires the maximum amount of memory (800 MB) by doing
the OTs for all inputs first and then evaluating a large circuit
with a working set of size 2 ∗ 107. The runtime is 138 s.

b) As another extreme we can iteratively compare one in-
put each at a time with the previously found minimum. This
approach needs the minimal amount of memory (18.4 MB)
but the maximal total runtime (272 s) as the OT protocol
introduces a significant overhead.

c) Our framework allows to choose an intermediate ap-
proach where we iteratively compute the minimum of a sub-
set of 500 inputs and the minimum of the previous iteration.
This sub-circuit has 19,960 non-linear gates and a working
set of 10,022 labels and is small enough to be cached in
memory – the total memory requirement is 21.5 MB and
the total runtime is 128 s.

When evaluating the same circuit on the same machine
with FastGC [HEKM11], this took approximately 1,250 s
and 189 MB memory, i.e., more than 9 times longer and 10
times more memory compared to our approach c).

According to [Mal11, Fig. 8], VMCrypt takes 44.5 min on
a slower CPU (Thinkpad X301 laptop with 3 GB RAM and
a 1.6 GHz Intel Core2 Duo processor running Ubuntu Linux
over the loopback interface), i.e., about 10 times longer than
our approach c), already considering the fact that our CPU
is about twice as fast. We assume that our improved perfor-
mance stems mainly from the fact that we do not allocate
and free many small objects.

4.3 Memory Consumption
Measuring the memory consumption of a Java program

is fuzzy, since released objects remain on the heap until the
garbage collector deletes them and the garbage collector it-
self is managed by the Java virtual machine. Thus, the
heap contains not only the currently used objects but also
already released ones and therefore the size of the heap will
be greater or equal to the size of the currently used objects.
We measured the maximum heap consumption of every pro-
tocol, since this gives an indication of how much memory
is needed for a runtime optimal execution. The protocols

443

might run with smaller heap sizes, but then the virtual ma-
chine has to invoke the garbage collection more often which
results in longer runtimes. Table 4 shows the maximum size
of the heap during the execution for all protocols.

The memory consumption of FastGC is linear in the total
number of gates whereas in our implementation it is lin-
ear in the size of the working set. Although for circuits
that are divisible into many small sub-circuits like AES or
PRESENT the memory consumption of both implementa-
tions is almost the same; the memory efficiency advantage
of our implementation becomes obvious for larger circuits:
Compared to FastGC we achieve a memory consumption re-
duction by factor 5 for Fast Multiplication and by factor 8
for Minimum for approach c) – by combining the repeated
use of a sub-circuit and then just holding the working set in
memory, we can evaluate the Minimum circuit with almost
140 million gates using only 21.5 MB of memory.

Acknowledgments. The authors would like to thank René
Peralta for helpful discussions on efficient circuit construc-
tions. The first author was supported by Australian Re-
search Council grant DP0984063, by an Adelaide Scholar-
ship International, and a Supplementary Scholarship by the
Defence Systems Innovation Centre. The second author was
supported by the German Federal Ministry of Education and
Research (BMBF) within EC SPRIDE and by the Hessian
LOEWE excellence initiative within CASED.

5. REFERENCES
[Bea95] D. Beaver. Precomputing oblivious transfer. In

Advances in Cryptology – CRYPTO’95, volume
963 of LNCS, pages 97–109. Springer, 1995.

[BG11] M. Blanton and P. Gasti. Secure and efficient
protocols for iris and fingerprint identification.
In European Symposium on Research in
Computer Security (ESORICS’11), volume
6879 of LNCS, pages 190–209. Springer, 2011.

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas.
FairplayMP: a system for secure multi-party
computation. In ACM Conference on
Computer and Communications Security
(CCS’08), pages 257–266. ACM, 2008.

[BNSS11] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and
T. Schneider. Twin Clouds: Secure cloud
computing with low latency. In
Communications and Multimedia Security
Conference (CMS’11), volume 7025 of LNCS,
pages 32–44. Springer, 2011.

[BP06] J. Boyar and R. Peralta. Concrete
multiplicative complexity of symmetric
functions. In Mathematical Foundations of
Computer Science (MFCS’06), volume 4162 of
LNCS, pages 179–189. Springer, 2006.

[BP10] J. Boyar and R. Peralta. A new combinational
logic minimization technique with applications
to cryptology. In Symposium on Experimental
Algorithms (SOA’10), volume 6049 of LNCS,
pages 178–189. Springer, 2010.

[CHM11] N. T. Courtois, D. Hulme, and T. Mourouzis.
Solving circuit optimisation problems in
cryptography and cryptanalysis. In 2nd IMA
Conference Mathematics in Defence, 2011.

[CHM12] N. T. Courtois, D. Hulme, and T. Mourouzis.
Solving circuit optimisation problems in
cryptography and cryptanalysis. In
Special-purpose Hardware for Attacking
Cryptographic Systems (SHARCS’12), pages
179–191, 2012.

[FIPR05] M. J. Freedman, Y. Ishai, B. Pinkas, and
O. Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of
Cryptography Conference (TCC’05), volume
3378 of LNCS, pages 303–324. Springer, 2005.

[HCE11a] Y. Huang, P. Chapman, and D. Evans.
Privacy-preserving applications on
smartphones. In USENIX Workshop on Hot
Topics in Security (HotSec’11), 2011.

[HCE11b] Y. Huang, P. Chapman, and D. Evans. Secure
computation on mobile devices, 2011. Poster at
IEEE Symposium on Security and Privacy.

[HEK12] Y. Huang, D. Evans, and J. Katz. Private set
intersection: Are garbled circuits better than
custom protocols? In Network and Distributed
Security Symposium (NDSS’12). The Internet
Society, 2012.

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka.
Faster secure two-party computation using
garbled circuits. In USENIX Security
Symposium (Security’11), pages 539–554.
USENIX, 2011.

[HFKV12] A. Holzer, M. Franz, S. Katzenbeisser, and
H. Veith. Secure two-party computations in
ANSI C. In ACM Conference on Computer and
Communications Security (CCS’12), pages
772–783. ACM, 2012.

[HKE12] Y. Huang, J. Katz, and D. Evans.
Quid-pro-quo-tocols: Strengthening
semi-honest protocols with dual execution. In
IEEE Symposium on Security and Privacy.
IEEE, 2012.

[HKS+10] W. Henecka, S. Kögl, A.-R. Sadeghi,
T. Schneider, and I. Wehrenberg. TASTY: Tool
for Automating Secure Two-partY
computations. In ACM Conference on
Computer and Communications Security
(CCS’10), pages 451–462. ACM, 2010.

[HMEK11] Y. Huang, L. Malka, D. Evans, and J. Katz.
Efficient privacy-preserving biometric
identification. In Network and Distributed
System Security (NDSS’11). The Internet
Society, 2011.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In
Advances in Cryptology – CRYPTO’03, volume
2729 of LNCS, pages 145–161. Springer, 2003.

[JKSS10a] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and
T. Schneider. Embedded SFE: Offloading
server and network using hardware tokens. In
Financial Cryptography and Data Security
(FC’10), volume 6052 of LNCS, pages 207–221.
Springer, 2010.

[JKSS10b] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and
T. Schneider. Garbled circuits for
leakage-resilience: Hardware implementation

444

Table 4: Comparison of the memory consumption.
Circuit tot. number of gates gates in memory working set FastGC [HEKM11] Our Impl.

Original Hamming 7,163 7,163 1,800 28.5 MB 17 MB
Improved Hamming 5,362 5,362 1,800 26 MB 17 MB
Original AES 36,720 878 256 20.3 MB 16.9 MB
Improved AES 24,720 803 256 20.2 MB 18.7 MB
PRESENT 8,496 77 128 18.9 MB 18.6 MB
Fast Multiplication 57,072 57,072 1,074 74.4 MB 15 MB

137,999,862
a) 137,999,862 a) 20,000,002 a) 799.7 MB

Minimum b) 414 b) 104 189 MB b) 18.4 MB
c) 69,000 c) 10,022 c) 21.5 MB

and evaluation of one-time programs. In
Cryptographic Hardware and Embedded
Systems (CHES’10), volume 6225 of LNCS,
pages 383–397. Springer, 2010.

[JL09] S. Jarecki and X. Liu. Efficient oblivious
pseudorandom function with applications to
adaptive OT and secure computation of set
intersection. In Theory of Cryptography
Conference (TCC’09), volume 5444 of LNCS,
pages 577–594. Springer, 2009.

[Ker11] F. Kerschbaum. Automatically optimizing
secure computation. In ACM Computer and
Communications Security (CCS’11), pages
703–714. ACM, 2011.

[KO62] A. A. Karatsuba and Y. Ofman. Multiplication
of many-digital numbers by automatic
computers. SSSR Academy of Sciences,
145:293–294, 1962.

[KS08] V. Kolesnikov and T. Schneider. Improved
garbled circuit: Free XOR gates and
applications. In International Colloquium on
Automata, Languages and Programming
(ICALP’08), volume 5126 of LNCS, pages
486–498. Springer, 2008.

[KSS09] V. Kolesnikov, A.-R. Sadeghi, and
T. Schneider. Improved garbled circuit building
blocks and applications to auctions and
computing minima. In Cryptology and Network
Security (CANS’09), LNCS. Springer, 2009.

[KSS12] B. Kreuter, A. Shelat, and C.-H. Shen.
Billion-gate secure computation with malicious
adversaries. In USENIX Security Symposium
(Security’12). USENIX, 2012.

[LP09a] Y. Lindell and B. Pinkas. A proof of Yao’s
protocol for secure two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

[LP09b] Y. Lindell and B. Pinkas. Secure multiparty
computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality,
1(1):59–98, 2009.

[Mal11] L. Malka. VMCrypt - modular software
architecture for scalable secure computation. In
ACM Conference on Computer and
Communications Security (CCS’11), pages
715–724. ACM, 2011.

[MLB12] B. Mood, L. Letaw, and K. Butler.
Memory-efficient garbled circuit generation for

mobile devices. In Financial Cryptography and
Data Security (FC’12), LNCS. Springer, 2012.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay — a secure two-party computation
system. In USENIX Security Symposium, pages
287–302. USENIX, 2004.

[MZE12] W. Melicher, S. Zahur, and D. Evans. An
intermediate language for garbled circuits.
Poster at IEEE Symposium on Security and
Privacy, 2012.

[NNOB12] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and
S. S. Burra. A new approach to practical
active-secure two-party computation. In
Advances in Cryptology – CRYPTO’12, volume
7417 of LNCS, pages 681–700. Springer, 2012.

[NP01] M. Naor and B. Pinkas. Efficient oblivious
transfer protocols. In ACM-SIAM Symposium
On Discrete Algorithms (SODA’01), pages
448–457. Society for Industrial and Applied
Mathematics, 2001.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy
preserving auctions and mechanism design. In
ACM Conference on Electronic Commerce,
pages 129–139. ACM, 1999.

[OPJM10] M. Osadchy, B. Pinkas, A. Jarrous, and
B. Moskovich. SCiFI - a system for secure face
identification. In IEEE Symposium on Security
and Privacy, pages 239–254. IEEE, 2010.

[PSS09] A. Paus, A.-R. Sadeghi, and T. Schneider.
Practical secure evaluation of semi-private
functions. In Applied Cryptography and
Network Security (ACNS’09), volume 5536 of
LNCS, pages 89–106. Springer, 2009.

[PSSW09] B. Pinkas, T. Schneider, Nigel P. Smart, and
Stephen C. Williams. Secure two-party
computation is practical. In Advances in
Cryptology – ASIACRYPT 2009, volume 5912
of LNCS, pages 250–267. Springer, 2009.

[Sch12] T. Schneider. Engineering Secure Two-Party
Computation Protocols: Design, Optimization,
and Applications of Efficient Secure Function
Evaluation. Springer, 2012.

[Yao86] A. C. Yao. How to generate and exchange
secrets. In Foundations of Computer Science
(FOCS’86), pages 162–167. IEEE, 1986.

445

	Introduction
	Outline and Our Contributions
	Related Works

	Preliminaries
	Yao's Garbled Circuit Protocol
	Yao's Garbled Circuit Protocol
	Garbled Circuit Optimizations
	Oblivious Transfer

	Minor Remark on the Choice of Security Parameters

	Faster Secure Evaluation of Garbled Circuits
	Improved Base OTs
	Extending OTs with Low Memory Footprint
	Streaming Circuits and Garbled Circuits with Low Memory Footprint
	Sub-Circuit Compilation
	Caching of Circuits and Communication

	Performance Benchmarks and Applications
	Oblivious Transfers
	Online Time
	Hamming Weight
	Block Ciphers
	Fast Multiplication
	Minimum

	Memory Consumption

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

