
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Informatik 12
Am Weichselgarten 3
91058 Erlangen

Reconfigurable Computing
Solution of Exercise 1

Answer 1

•

ai bi ui−1 si ui
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

• The output Si is output of one xor, and the inputs of xor are ui−1 and the sum of half adder
with inputs of ai and bi.
The output ui will be 1,if at least 2 variable inputs are 1 . We can use intuitively two half adders

to build the full adder circuit: the first half adder takes the inputs ai and bi. Its Partial-Sum, also
the carry ui −1 are the inputs of the second half adder, and the outputs are Si and ui.

• Tmin = 3τ

Fmax = 1/3τ

• Values in two’s complement:
Addition a+b: Control line x = 0.
Subtraction a−b = a+b+1, Control line x = 1. By XORing the control line x and b , we will
have b, if x = 1. For having also the value 1 in the equation, the 0th-add carry in the 0th Full
adder is set one, when x is 1.

1

• 1. Function of 2:1 Multiplexers (Inputs I0, I1, Output O, selector S): O(S, I0, I1) = S(I0)+
S(I1)

2. Shannon Expansion Theorem: f (S, I0, I1) = S∗ f1(S = 0, I0, I1)+S∗ f1(S = 1, I0, I1)

3. Function of 4:1 Multiplexer (Inputs I0, I0, I2, I3, Output O, selector S0,S1 :) O(S0,S1, I0, I1, I2, I3)=
S1S0S1(I0)+S0S1(I1)+S0S1(I2)+S1S2(I3)

4. Shannon Expansion Theorem (2nd Stage):
F(x1, .xn) = F(x1, .,xi = 1, .,xn) ∗ xi + F(x1, .,xi = 0, .,xn) ∗ xi = [F(x1, .,xi = 1, .,x j =
1, ..xn) ∗ xi + F(x1, .,xi = 0, .,x j = 1, .,xn) ∗ xi]x j + [F(x1, .,xi = 1, .,x j = 0, .,xn) ∗ xi +
F(x1, .,xi = 0, .,x j = 0, .,xn)∗ xi]x j
= F(x1, .,xi = 1, .,x j = 1, ..xn) ∗ xix j + F(x1, .,xi = 0, .,x j = 1, .,xn) ∗ xix j + F(x1, .,xi =
1, .,x j = 0, .,xn)∗ xix j +F(x1, .,xi = 0, .,x j = 0, .,xn)∗ xix j

5. si = ai ∗bi ∗ui−1 +ai ∗bi ∗ui−1 +ai ∗bi ∗ui−1 +ai ∗bi ∗ui−1

6. ui = ai ∗bi ∗ui−1 +ai ∗bi ∗ui−1 +ai ∗bi ∗ui−1 +ai ∗bi ∗ui−1 = ai ∗bi ∗(0)+ai ∗bi ∗ui−1 +
ai ∗bi ∗ui−1 +ai ∗bi ∗ (1)

Answer 2

z z′ T4 T3 T2 T1
0000 0001 0 0 0 1
0001 0010 0 0 1 1
0010 0011 0 0 0 1
0011 0100 0 1 1 1
0100 0101 0 0 0 1
0101 0110 0 0 1 1
0110 0111 0 0 0 1
0111 1000 1 1 1 1
1000 1001 0 0 0 1
1001 0000 1 0 0 1
1010 xxxx x x x x
1011 xxxx x x x x
1100 xxxx x x x x
1101 xxxx x x x x
1110 xxxx x x x x
1111 xxxx x x x x

2

Answer 3

SoP: f = x1∗ x2∗ x3+ x2∗ x3∗ x4+ x1∗ x3∗ x4+ x1∗ x2∗ x3+ x1∗ x3∗ x4+ x2∗ x3∗ x4;
cost = 7 gates + 24 inputs = 31 units (several other answers are equivalent)

PoS: f = (x1+ x2+ x3+ x4)∗ (x1+ x2+ x3)∗ (x1+ x2+ x4)∗ (x1+ x3+ x4)∗ (x2+ x3+ x4);
cost = 6 gates + 21 inputs = 27 units

PoS is less expensive than SoP.

Answer 4
In Von-Neumann machine : 1 Instruction cycle = 5 clock cycle
TVon−Neumann = 3∗5+ da−x0

dx e∗11∗5

3

4Mul,2Add/Sub/Comp
THardware = 1+ da−x0

dx e∗4
Optimized architecture :3Mul,2Add/Sub/Comp

4

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Informatik 12
Am Weichselgarten 3
91058 Erlangen

Reconfigurable Computing
Solution of Exercise 2

Answer 1

• Truth table for the 1-bit full adder.

ai bi ui−1 si ui
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

si = aibiui−1 +aibiui−1 +aibiui−1 +aibiui−1
ui = aibiui−1 +aibiui−1 +aibiui−1 +aibiui−1

PLA-Mapping:

ai ib ui−1

iu
is

1

Answer 2
PLA-Mapping of the Mod-10 counter:

1 2 3z z4z z

T
2

3 4
TT

CLK

T
1 Q

Q’

T Q

Q’

T Q

Q’

TQ

Q’

T

Answer 3
Comparator circuit for two ASCII characters:
Truth table of the 2-bit magnitude comparators

a1 a0 b1 b0 EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

2

A
0

A
0

A
1

B
0

B
0

A
1

B
0

B
1

B
1

B
1

11

1 1

EQ A
0

A
0

A
1

B
0

B
0

A
1

B
0

B
1

B
1

B
1

1

NE

1
1
1 1

1 1 1
1

1 1
1

A
0

A
0

A
1

B
0

B
0

A
1

B
0

B
1

B
1

B
1

LT

1 1 1 1
1

1

A
0

A
0

A
1

B
0

B
0

A
1

B
0

B
1

B
1

B
1

1

GT

1
1 1 1 1

3

EQ = A0B0A1B1 +A0B0A1B1 +A0B0A1B1 +A0B0A1B1
NE = A0B0 +A0B0 +A1B1 +A1B1
LT = A1B1 +A0B0A1 +A0B0B1
GT = A1B1 +A0A1B0 +A0B1B0

Answer 4
Parallel code for the GCD.

int GGT(int x, int y)
{

static int n = 0;
while(even(x) && even(y))
{

n = n +1;
x = half(x);
y = half(y);

}
while(x != y)
{

while (even(x)) x = half(x);
while (even(y)) y = half(y);

if (x < y)
{

y = half(y-x);
}
else
{

if (x != y)
{

x = half(x-y);
}

}
}
while(n != 0)
{

n = n - 1;
x = twice(x);

}
}

4

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Informatik 12
Am Weichselgarten 3
91058 Erlangen

Reconfigurable Computing
Solution of Exercise 1

•

•

1

•

2

• entity controller
port (x,clk,reset: in std_logic;

F,z1,z2: out std_logic);
end entity;

architecture structural of controller is
type state_type is (S0, S1, S2, S3);
signal current_state, next_state: state_type;

begin
comp_state: process(x)

begin
case current_state is
when S0 =>
if (x=0) then next_state <= S1;
else next_state <= S2; end if;
z1 <= ’0’; z2 <= ’1’; F <= ’0’;

when S1 =>
if (x=0) then next_state <= S0;
else next_state <= S3; end if;
z1 <= ’1’; z2 <= ’0’; F <= ’0’;

when S2 =>
next_state <= S1;
z1 <= ’0’; z2 <= ’0’; F <= ’1’;

when S3 =>
next_state <= S0;
z1 <= ’0’; z2 <= ’0’; F <= ’1’;

end case;
end process;

set_state: process (clk, reset)
begin
if (reset = ’1’) then

current_state <= S0;
elsif(clk´event and clk=´1´) then

current_state <= next_state;
end if;
end process;

end architecture;

3

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Informatik 12
Am Weichselgarten 3
91058 Erlangen

Reconfigurable Computing
Solution of Exercise 4

Answer 1

• Chortle-crf method Step 1

• Chortle-crf method Step 2

1

Answer 2

Labeling: All nodes are labeled with the depth of the LUT in which they will be implemented.

• Labeling is done in topological order.

• The PI are assigned the label 0.

• For each node t in the graph the cone Nt is transformed in to a network by inserting a source
node.

• The label l(t) of t is calculated on the basis of all k-feasible cuts in the network, where k
is the number of the inputs for the LUTs. The minimum heighthmin over all feasible cut is
computed.l(t) = hmin.

• To compute a k-feasible cut with height p− 1, the network Nt is transformed into a new net-
work N1

t , by collapsing all the nodes with maximum label together with t into a new node
t1. The problem of computing a k-feasible cut with height p− 1 Nt is now reduced to that of
computing a k-feasible cut in N1

t .

• A second transformation is done on N1
t to obtain a new network N2

t . The goal is to map the
node-cut problem in N1

t into an edge-cut problem into N2
t , to solve the problem in N2

t and
derive the solution for N1

t . In N2
t , the problem of finding a cut in N2

t whose edge cut-size
is no more than K. This is done with the augmenting path method according to the min-cut
max-flow theorem of Ford and Fulkerson.

Answer 3

•

• entity ChangeCase
port (isUC: in std_logic;

Cin: in std_logic_vector(7 downto 0);
Result: out std_logic_vector(7 downto 0));

end entity;

architecture structural of ChangeCase is

2

begin
if(isUC=’1’) then
Result <= Cin + 32;

else
Result <= Cin - 32;

end if;
end architecture;

• entity Transfer
port (Lcmd,Ucmd,Ncmd,Ccmd: in std_logic;Cin: in std_logic_vector(7 downto 0);

Result: in std_logic_vector(7 downto 0));
end entity;

architecture structural of Transfer is

component ChangeCase
port (isUC: in std_logic;

Cin: in std_logic_vector(7 downto 0);
Result: out std_logic_vector(7 downto 0));

end component;

begin

if(Lcmd=’1’) then
Result <= Cin - 32;

elsif(Ucmd=’1’) then
Result <= Cin + 32;

elsif(Ncmd=’1’) then
Result <= Cin;

elsif(Ccmd=’1’) then
cc:ChangeCase
port map(Cin(5),Cin,Result);

end if;
end architecture;

• The result is actually only depends on bit 5 of the input character. Suppose Ccmd = 1, this

3

implies Ncmd = Lcmd = 0. Then, the output is the complement of bit 5 of input. Similarly, we
can analyze the other three cases. Also, when Ucmd = 1, the output is 0.

4

• entity CharComp
port (Cin,ESC: in std_logic_vector(7 downto 0);

isESC: out std_logic);
end entity;
architecture structural of CharComp is

begin
if(Cin=ESC) then
isESC <= ’1’;
else
isESC <= ’0’;
end if;
end architecture;

• Let us consider the codes of the four letters that may appear in an escape sequence:
L = 0x4c = 01001100 = 74
U = 0x55 = 01010101 = 85
N = 0x4E = 01001110 = 78
C = 0x43 = 01001110 = 67
Notice that the two least significant bits are sufficient to distinguish them. Furthermore, from
the discussion of the transform block, we know that we do not need to produce Ucmd. There-
fore we can implement the command decoder as shown in the following:

entity Comm_Interpret
port (Cin: in std_logic_vector(7 downto 0);

Lcmd,Ucmd,Ncmd,Ccmd: out std_logic);
end entity;
architecture structural of Comm_Interpret is

begin
case Cin(1 downto 0) is

when ‘‘00’’ =>
Lcmd <= ’1’;
Ucmd <= ’0’;
Ncmd <= ’0’;
Ccmd <= ’0’;

when ‘‘01’’ =>

5

Lcmd <= ’0’;
Ucmd <= ’1’;
Ncmd <= ’0’;
Ccmd <= ’0’;

when ‘‘10’’ =>
Lcmd <= ’0’;
Ucmd <= ’0’;
Ncmd <= ’1’;
Ccmd <= ’0’;

when ‘‘11’’ =>
Lcmd <= ’0’;
Ucmd <= ’0’;
Ncmd <= ’0’;
Ccmd <= ’1’;

when others =>
end case;

end architecture;

6

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Informatik 12
Am Weichselgarten 3
91058 Erlangen

Reconfigurable Computing
Solution of Exercise 5

Answer 1

• Connectivity :con(G) = 2∗ |E|/(|V|2−|V|) = 2∗15/(72−7) = 5/7 = 0.714

• Straight Forward Partitioning

• List Scheduling Partitioning

1

• Quality of partitioning : Average Connectivity over partitions
Straight-Forward :
con(P1) = 0
con(P2) = 2∗3/(16−4) = 0.5
Q(SF) = 0.25

List-Scheduling :
con(P1) = 2∗2/(9−3) = 0.66
con(P2) = 2∗3/(16−4) = 6/12= 0.5
Q(LS) = 0.58

Answer 2

Connection matrixC:

C =



0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 0


Degree matrixD:

D =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 2


Laplacian matrixB = D−C:

B =



1 0 0 0 −1 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0
0 0 0 1 0 −1 0

−1 −1 0 0 3 0 −1
0 0 −1 −1 0 3 −1
0 0 0 0 −1 −1 2


Three smallest non-zero eigenvalues:
0.267949, 1 , 1, corresponding respectively to the 4-th, 5-th and 6-th eigenvectors.

2

x =



+0.444024
+0.444024
−0.444035
−0.444035
+0.325108
−0.325047

0.000000



y =



0.707107
−0.707107

0
0
0
0
0



t =



0
0

−0.707107
+0.707107

0
0
0


Temporal partitions:
The eigenvectors describe the placement of the 7 nodes in the 3-dimensional space (x, y, t). E.g.
the coordinates of noden1 = (0.444024,0.707107,0), of noden2 = (0.444024,−0.707107,0), etc.
From the eigenvector t follows, that there will be three temporal partitions: one fort = −0.707107,
the second fort = 0 and the third fort = 0.707107.

Answer 3

3

Answer 4

Area constraints:
P1 : S(1) + S(12) + S(7) + S(4) ≤ S(device), i.e for P1 of the first partition :10+ 80+ 50+ 25 =
165≤ 150→ not fulfilled
For P2,P3,P4 of both partitions these constraints must be computed in the same way.

Terminal constraints:
P1 : T(1,9)+ T(12,8)+ T(4,5)+ T(7,3)+ T(PI,1)+ T(PI,7) ≤ T(device), i.e for P1 of the first
partition : 8×6 = 48≤ 30→ not fulfilled
For P2,P3,P4 of both partitions these constraints must be computed in the same way.

Unique assignment constraints:
For vertexv4 of the second Partition:v4 : y41 = y42 = 0,y43 = y44 = 1,

v4 : y41+y42+y43+y44 = 2→ not fulfilled

All other vertices must be computed in the same way.

Result: Both partitions are illegal, as none of them fulfills all constraints.

4

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Informatik 12
Am Weichselgarten 3
91058 Erlangen

Reconfigurable Computing
Solution of Exercise 6

Answer 1

• Component Graph (see Figure1 and 2):

– For the X-Axis: connect two nodes with an edge, if they are placed in the same column

– For the Y-Axis: connect two nodes with an edge, if they are placed in the same row

• Complement Graph (see Figure1 and 2):

– Invert the edges of the component graph

– For the X-Axis: This graph shows you the possible left/right neighbours of a nodevi

– For the Y-Axis: This graph shows you the possible upper/lower neighbours of a nodevi

Figure 1: X-Axis: Component and Complement Graph

1

Figure 2: Y-Axis: Component and Complement Graph

• Transitive Orientation (see Figure3):

– Several possible Solutions

– Has to be cycle-free

– For the X-Axis: Gives the order in x-direction between the different nodes

– For the Y-Axis: Gives the order in y-direction between the different nodes

Figure 3: Transitive Orientations for X- and Y-Axis

2

• The corresponding placement for the two Transitive Orientations is illustrated in Figure
4.

Figure 4: Corresponding Placement according to the two previously computed transitive orientations

• The given partial ordering does not affect the two dimensional placement.
Neither a transitive implication nor a path implication conflict exists.
In the third dimension, component M8 will replace component M1 and component M9
will replace component M6.

Answer 2

• Figure5 shows the computed 8 maximal empty rectangles: A,B,C,D,E,F,G,H

• Figure6 shows the computed 7 non overlapping empty rectangles:

• Figure7 shows the computed 11 maximal empty rectangles:

• According to communications, it will be placed as shown in Figure8: Following the RC lec-
ture the communication aware placement according to the Ahmadinia-Bobda approach can be
found by solving the following equation forxn andyn:

min

{
n−1

∑
i=1

((
xn +

wn

2
−xi −

wi

2

)2
+
(

yn +
hn

2
−yi −

hi

2

)2

∗win

)}
(1)

As xn andyn are independent from each other the above equation can be split into 2 equations:

3

Figure 5: 8 maximal empty rectangles

Figure 6: 7 non overlapping empty rectangles

min

{
n−1

∑
i=1

((
xn +

wn

2
−xi −

wi

2

)2
∗win

)}
(2)

min

{
n−1

∑
i=1

((
yn +

hn

2
−yi −

hi

2

)2

∗win

)}
(3)

To find the minima, we have to derivate both functions and set them equal to 0:

0 =
∂
{

n−1
∑

i=1

((
xn + wn

2 −xi − wi
2

)2∗win

)}
∂xn

(4)

4

Figure 7: 11 maximal empty rectangles

0 =
∂
{

n−1
∑

i=1

((
yn + hn

2 −yi − hi
2

)2
∗win

)}
∂yn

(5)

The resulting equations, which now can be solved forxn andyn by inserting the known values
for the differentxi , yi , wi , hi , wn, hn andwin are:

xn =

n−1
∑

i=1
win ∗

((
xi + wi

2

)
− wn

2

)
n−1
∑

i=1
win

(6)

yn =

n−1
∑

i=1
win ∗

((
yi + hi

2

)
− hn

2

)
n−1
∑

i=1
win

(7)

You can solve these equations by inserting the following values:

Center of M3:x3 + w3
2 = 8 , y3 + h3

2 = 11

Center of M5:x5 + w5
2 = 11 ,y5 + h5

2 = 7
IO-Pins on the right border:xa1 = 13 ,ya1 = 10
IO-Pins on the upper border:xa2 = 11 ,ya2 = 13

The resulting placement coordinates (bottom left corner of M6) for M6 are:

xn = 10,yn = 9,25

This coordinate is within M3 and therefore it is an illegal placement. To find the next best
placement, we go from this point into the four cardinal points. In the directions north, west and
south, no legal placements can be found. However in direction east a legal placement is found
on which we can place M6.

5

Figure 8: Placement of M6 according to the Ahmadinia-Bobda-approach

6

