Reconfigurable Computing

Solution of Exercise 1

Answer 1

a_{i}	b_{i}	u_{i-1}	s_{i}	u_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- The output S_{i} is output of one xor, and the inputs of xor are u_{i-1} and the sum of half adder with inputs of a_{i} and b_{i}.
The output u_{i} will be 1 , if at least 2 variable inputs are 1 . We can use intuitively two half adders

to build the full adder circuit: the first half adder takes the inputs a_{i} and b_{i}. Its Partial-Sum, also the carry $u_{i}-1$ are the inputs of the second half adder, and the outputs are S_{i} and u_{i}.
- $T_{\text {min }}=3 \tau$
$F_{\text {max }}=1 / 3 \tau$

- Values in two's complement:

Addition $a+b$: Control line $x=0$.
Subtraction $a-b=a+\bar{b}+1$, Control line $x=1$. By XORing the control line x and b , we will have \bar{b}, if $x=1$. For having also the value 1 in the equation, the $0 t h$-add carry in the $0 t h$ Full adder is set one, when x is 1 .

- 1. Function of 2:1 Multiplexers (Inputs I_{0}, I_{1}, Output O, selector S): $O\left(S, I_{0}, I_{1}\right)=\bar{S}\left(I_{0}\right)+$ S(I1)

2. Shannon Expansion Theorem: $f\left(S, I_{0}, I_{1}\right)=\bar{S} * f_{1}\left(S=0, I_{0}, I_{1}\right)+S * f_{1}\left(S=1, I_{0}, I_{1}\right)$
3. Function of 4:1 Multiplexer (Inputs $I_{0}, I_{0}, I_{2}, I_{3}$, Output O, selector S_{0}, S_{1} :) $O\left(S_{0}, S_{1}, I_{0}, I_{1}, I_{2}, I_{3}\right)=$ $S_{1} \overline{S_{0} S_{1}}\left(I_{0}\right)+\overline{S_{0}} S_{1}(I 1)+S_{0} \overline{S_{1}}(I 2)+S_{1} S_{2}(I 3)$
4. Shannon Expansion Theorem (2nd Stage):
$F\left(x_{1}, . x_{n}\right)=F\left(x_{1}, ., x_{i}=1, ., x_{n}\right) * x_{i}+F\left(x_{1}, ., x_{i}=0, ., x_{n}\right) * \overline{x_{i}}=\left[F\left(x_{1}, ., x_{i}=1, ., x_{j}=\right.\right.$ $\left.\left.1, . . x_{n}\right) * x_{i}+F\left(x_{1}, ., x_{i}=0, ., x_{j}=1, ., x_{n}\right) * \overline{x_{i}}\right] x_{j}+\left[F\left(x_{1}, ., x_{i}=1, ., x_{j}=0, ., x_{n}\right) * x_{i}+\right.$ $\left.F\left(x_{1}, ., x_{i}=0, ., x_{j}=0, ., x_{n}\right) * \overline{x_{i}}\right] \overline{x_{j}}$
$=F\left(x_{1}, ., x_{i}=1, ., x_{j}=1, . . x_{n}\right) * x_{i} x_{j}+F\left(x_{1}, ., x_{i}=0, ., x_{j}=1, ., x_{n}\right) * \overline{x_{i}} x_{j}+F\left(x_{1}, ., x_{i}=\right.$ $\left.1, ., x_{j}=0, ., x_{n}\right) * x_{i} \overline{x_{j}}+F\left(x_{1}, ., x_{i}=0, ., x_{j}=0, ., x_{n}\right) * \overline{x_{i} x_{j}}$
5. $s_{i}=\overline{a_{i}} * \overline{b_{i}} * u_{i-1}+\overline{a_{i}} * b_{i} * \overline{u_{i-1}}+a_{i} * \overline{b_{i}} * \overline{u_{i-1}}+a_{i} * b_{i} * u_{i-1}$
6. $u_{i}=\overline{a_{i}} * b_{i} * u_{i-1}+a_{i} * \overline{b_{i}} * u_{i-1}+a_{i} * b_{i} * \overline{u_{i-1}}+a_{i} * b_{i} * u_{i-1}=\overline{a_{i}} * \overline{b_{i}} *(0)+a_{i} * \overline{b_{i}} * u_{i-1}+$ $\overline{a_{i}} * b_{i} * u_{i-1}+a_{i} * b_{i} *(1)$

Answer 2

z	$z \prime$	T_{4}	T_{3}	T_{2}	T_{1}
0000	0001	0	0	0	1
0001	0010	0	0	1	1
0010	0011	0	0	0	1
0011	0100	0	1	1	1
0100	0101	0	0	0	1
0101	0110	0	0	1	1
0110	0111	0	0	0	1
0111	1000	1	1	1	1
1000	1001	0	0	0	1
1001	0000	1	0	0	1
1010	xxxx	x	x	x	x
1011	xxxx	x	x	x	x
1100	xxxx	x	x	x	x
1101	xxxx	x	x	x	x
1110	xxxx	x	x	x	x
1111	xxxx	x	x	x	x

KV-Diagramme

$\left.T_{1}\right) \quad T_{1}=1$
T_{2})

-	1	1	-
-	1	1	-
.	,	-	,
-	0	,	,

T_{3})

-	-	0	-
-	1	1	-
,	,	-	-
-	0	*	-

τ_{4})

$$
\begin{aligned}
\mathrm{r}_{4} & =z_{1} z_{4}+z_{1} z_{2} z_{3} \\
& z_{1}\left(z_{4}+z_{2} z_{3}\right)
\end{aligned}
$$

Answer 3

SoP: $f=x 1 * \overline{x 2} * \overline{x 3}+x 2 * \overline{x 3} * \overline{x 4}+\overline{x 1} * \overline{x 3} * x 4+\overline{x 1} * \overline{x 2} * x 3+\overline{x 1} * x 3 * \overline{x 4}+\overline{x 2} * x 3 * \overline{x 4}$ cost $=7$ gates +24 inputs $=31$ units (several other answers are equivalent)

PoS: $f=(x 1+x 2+x 3+x 4) *(\overline{x 1}+\overline{x 2}+\overline{x 3}) *(\overline{x 1}+\overline{x 2}+\overline{x 4}) *(\overline{x 1}+\overline{x 3}+\overline{x 4}) *(\overline{x 2}+\overline{x 3}+\overline{x 4})$ cost $=6$ gates +21 inputs $=27$ units

PoS is less expensive than SoP

Answer 4

In Von-Neumann machine : 1 Instruction cycle $=5$ clock cycle
$T_{\text {Von-Neumann }}=3 * 5+\left\lceil\frac{a-x_{0}}{d x}\right\rceil * 11 * 5$

4Mul,2Add/Sub/Comp
$T_{\text {Hardware }}=1+\left\lceil\frac{a-x_{0}}{d x}\right\rceil * 4$
Optimized architecture : $3 \mathrm{Mul}, 2 \mathrm{Add} / \mathrm{Sub} / \mathrm{Comp}$

Informatik 12
Am Weichselgarten 3 91058 Erlangen

Reconfigurable Computing
Solution of Exercise 2

Answer 1

- Truth table for the 1 -bit full adder.

a_{i}	b_{i}	u_{i-1}	s_{i}	u_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$s_{i}=\overline{a_{i}} \overline{b_{i}} u_{i-1}+\overline{a_{i}} b_{i} \overline{u_{i-1}}+a_{i} \overline{b_{i}} \overline{u_{i-1}}+a_{i} b_{i} u_{i-1}$
$u_{i}=\overline{a_{i}} b_{i} u_{i-1}+a_{i} \overline{b_{i}} u_{i-1}+a_{i} b_{i} \overline{u_{i-1}}+a_{i} b_{i} u_{i-1}$
PLA-Mapping:

Answer 2
PLA-Mapping of the Mod-10 counter:

Answer 3
Comparator circuit for two ASCII characters:
Truth table of the 2-bit magnitude comparators

a_{1}	a_{0}	b_{1}	b_{0}	$E Q$	$N E$	$L T$	$G T$
0	0	0	0	1	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	0
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	0	1
1	0	1	0	1	0	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	1	0	1
1	1	0	1	0	1	0	1
1	1	1	0	0	1	0	1
1	1	1	1	1	0	0	0

Answer 4

Parallel code for the GCD.

```
```

int GGT(int x, int y)

```
```

int GGT(int x, int y)
{

```
{
```

```
static int n = 0;
```

static int n = 0;

```
static int n = 0;
while(even(x) && even(y))
while(even(x) && even(y))
while(even(x) && even(y))
{
{
{
    n = n +1;
    n = n +1;
    n = n +1;
    x = half(x);
    x = half(x);
    x = half(x);
    y = half(y);
    y = half(y);
    y = half(y);
}
}
}
while(x != y)
while(x != y)
while(x != y)
while (even(x)) x = half(x);
while (even(x)) x = half(x);
while (even(x)) x = half(x);
    while (even(y)) y = half(y)
    while (even(y)) y = half(y)
    while (even(y)) y = half(y)
    if (x < y)
    if (x < y)
    if (x < y)
        y = half (y-x);
        y = half (y-x);
        y = half (y-x);
    }
    }
    }
    lse
    lse
    lse
        if (x != y)
        if (x != y)
        if (x != y)
            x = half(x-y)
            x = half(x-y)
            x = half(x-y)
        }
        }
        }
    }
    }
    }
}
}
}
while(n != 0)
while(n != 0)
while(n != 0)
{
{
{
    n = n - 1;
    n = n - 1;
    n = n - 1;
    x = twice(x);
    x = twice(x);
    x = twice(x);
}
```

}

```
```

 {
    ```
```

 {
    ```
```

 {
    ```

Informatik 12
Am Weichselgarten 3 91058 Erlangen

\section*{Reconfigurable Computing}

Solution of Exercise 1

\begin{tabular}{|c|c|c|c|c|}
\hline State & \multicolumn{2}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline & \(\mathbf{x}=\mathbf{0}\) & \(\mathbf{x}=\mathbf{1}\) & \(\mathbf{F}\) & \(\mathbf{z}_{\mathbf{1}} \mathbf{z}_{\mathbf{2}}\) \\
\hline \(\mathrm{s}_{0}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{2}\) & 0 & 01 \\
\hline \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{0}\) & \(\mathrm{~s}_{3}\) & 0 & 10 \\
\hline \(\mathrm{~s}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{1}\) & 1 & 00 \\
\hline \(\mathrm{~s}_{3}\) & \multicolumn{2}{|c|}{\(\mathrm{~s}_{0}\)} & \(\mathrm{~s}_{0}\) & \multicolumn{2}{c|}{1} & 00 \\
\hline \hline State & \multicolumn{2}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline \(\mathbf{Q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{0}}\) & \(\mathbf{x}=\mathbf{0}\) & \(\mathbf{x}=\mathbf{1}\) & \(\mathbf{F}\) & \(\mathbf{z}_{\mathbf{1}} \mathbf{z}_{\mathbf{2}}\) \\
\hline 00 & 01 & 10 & 0 & 01 \\
\hline 01 & 00 & 11 & 0 & 10 \\
\hline 10 & 01 & 01 & 1 & 00 \\
\hline 11 & 00 & 00 & 1 & 00 \\
\hline
\end{tabular}

- entity controller
port (x,clk,reset: in std_logic
F,z1,z2: out std_logic)
end entity;
architecture structural of controller is
type state_type is (S0, S1, S2, S3);
signal current_state, next_state: state_type;
begin
comp_state: process(x)
begin
case current_state is
when \(\mathrm{SO}=>\)
if \((x=0)\) then next_state <= S1;
else next_state <= S2; end if;
z1 <= '0'; z2 <= '1'; \(\mathrm{F}<=\) '0'; when \(\mathrm{S1}=>\)
if \((\mathrm{x}=0\) ) then next_state <= \(S 0\);
else next_state \(<=\) S3; end if;
z1 <= '1'; z2<='0'; \(\mathrm{F}<={ }^{\prime} 0^{\prime}\) when \(S 2\) =>
next_state <= S1;
z1 <= '0'; z2<= '0'; \(\mathrm{F}<=\prime^{\prime}{ }^{\prime}\) when \(\mathrm{S3}=>\)
next_state <= S0;
z1 <= '0'; z2 <= '0'; \(\mathrm{F}<=\) '1'
end case;
end process;
set_state: process (clk, reset)
begin
if (reset = '1') then
current_state <= S0;
elsif(clk'event and clk='1') then current_state <= next_state; end if;
end process;
end architecture;

Answer 2
Labeling: All nodes are labeled with the depth of the LUT in which they will be implemented.
- Labeling is done in topological order.
- The PI are assigned the label 0 .
- For each node \(t\) in the graph the cone \(N_{t}\) is transformed in to a network by inserting a source node.
- The label \(l(t)\) of \(t\) is calculated on the basis of all \(k\)-feasible cuts in the network, where \(k\) is the number of the inputs for the LUTs. The minimum height \(h_{\text {min }}\) over all feasible cut is computed. \(l(t)=h_{\text {min }}\).
- To compute a \(k\)-feasible cut with height \(p-1\), the network \(N_{t}\) is transformed into a new network \(N^{1}{ }_{t}\), by collapsing all the nodes with maximum label together with \(t\) into a new node \(t_{1}\). The problem of computing a \(k\)-feasible cut with height \(p-1 N_{t}\) is now reduced to that of computing a \(k\)-feasible cut in \(N^{1}{ }_{t}\).
- A second transformation is done on \(N^{1}{ }_{t}\) to obtain a new network \(N^{2}{ }_{t}\). The goal is to map the node-cut problem in \(N^{1}{ }_{t}\) into an edge-cut problem into \(N^{2}{ }_{t}\), to solve the problem in \(N^{2}{ }_{t}\) and derive the solution for \(N^{1}{ }_{t}\). In \(N^{2}\), the problem of finding a cut in \(N^{2}{ }_{t}\) whose edge cut-size is no more than \(K\). This is done with the augmenting path method according to the min-cut max-flow theorem of Ford and Fulkerson.

Answer 3

-
- entity ChangeCase
port (isUC: in std_logic
Cin: in std_logic_vector (7 downto 0);
Result: out std_logic_vector(7 downto 0));
end entity;
architecture structural of ChangeCase is
```

begin
if(isUC='1') then
Result <= Cin + 32
else
Result <= Cin - 32;
end if;
end architecture;

```

- entity Transfer
port (Lcmd, Ucmd,Ncmd,Ccmd: in std_logic;Cin: in std_logic_vector(7 downto 0); Result: in std_logic_vector(7 downto 0));
end entity;
architecture structural of Transfer is
component ChangeCase
port (isUC: in std_logic;
Cin: in std_logic_vector (7 downto 0);
Result: out std_logic_vector(7 downto 0));
end component:
begin
if (Lcmd=' 1') then
Result <= Cin - 32.
elsif(Ucmd='1') then
Result <= Cin + 32;
elsif(Ncmd='1') then
Result <= Cin;
elsif(Ccmd='1') then
cc:ChangeCase
port map(Cin(5), Cin, Result);
end if;
end architecture;
- The result is actually only depends on bit 5 of the input character. Suppose \(C c m d=1\), this
implies \(N c m d=L c m d=0\). Then, the output is the complement of bit 5 of input. Similarly, we can analyze the other three cases. Also, when \(U c m d=1\), the output is 0 .

- entity CharComp
port (Cin, ESC: in std_logic_vector(7 downto 0); isESC: out std_logic)
end entity;
architecture structural of CharComp is
begin
f(Cin=ESC) then
isESC <= '1';
else
isESC <= '0';
end if;
end architecture;
- Let us consider the codes of the four letters that may appear in an escape sequence:
\(L=0 x 4 c=01001100=74\)
\(U=0 x 55=01010101=85\)
\(N=0 x 4 E=01001110=78\)
\(C=0 x 43=01001110=67\)
Notice that the two least significant bits are sufficient to distinguish them. Furthermore, from the discussion of the transform block, we know that we do not need to produce \(U c m d\). Therefore we can implement the command decoder as shown in the following:

entity Comm_Interpret
port (Cin: in std_logic_vector (7 downto 0); Lcmd,Ucmd,Ncmd,Ccmd: out std_logic);
end entity;
architecture structural of Comm_Interpret is

\section*{egin}
case Cin(1 downto 0) is
when ' 000 ' =>
Lcmd <= '1';
Ucmd <= '0';
Ncmd <= ' \(0^{\prime}\)
Ccmd <= '0'
when ' \({ }^{\prime} 01\) ' =>

Lcmd <= '0';
Ucmd <= '1'; Ncmd <= '0'; Ccmd \(<=\) ' \(0^{\prime}\);
when ' \({ }^{\prime} 10\) ' ' =>
Lamd <= '0';
Ucmd <= '0';
Ncmd <= '1';
Ccmd <= '0';
when ' '11'' =>
Lcmd <= '0';
Ucmd <= '0';
Ncmd <= \({ }^{\prime} 0^{\prime}\);
Ccmd <= '1';
when others => end case;
end architecture;


Informatik 12
Am Weichselgarten 3 91058 Erlangen

\section*{Reconfigurable Computing}

Solution of Exercise 5

\section*{Answer 1}
- Connectivity : \(\operatorname{con}(G)=2 *|E| /\left(|V|^{2}-|V|\right)=2 * 15 /\left(7^{2}-7\right)=5 / 7=0.714\)
- Straight Forward Partitioning

- List Scheduling Partitioning

- Quality of partitioning : Average Connectivity over partitions Straight-Forward :
\(\operatorname{con}(P 1)=0\)
\(\operatorname{con}(P 2)=2 * 3 /(16-4)=0.5\)
\(Q(S F)=0.25\)
List-Scheduling :
\(\operatorname{con}(P 1)=2 * 2 /(9-3)=0.66\)
\(\operatorname{con}(P 2)=2 * 3 /(16-4)=6 / 12=0.5\)
\(Q(L S)=0.58\)

\section*{Answer 2}

Connection matrix \(C\) :
\[
C=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\]

Degree matrix \(D\)
\[
D=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
\]

Laplacian matrix \(B=D-C\) :
\[
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & 3 & 0 & -1 \\
0 & 0 & -1 & -1 & 0 & 3 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 2
\end{array}\right]
\]

Three smallest non-zero eigenvalues:
\(0.267949,1,1\), corresponding respectively to the 4 -th, 5 -th and 6 -th eigenvectors.
\(x=\left[\begin{array}{r}+0.444024 \\ +0.444024 \\ -0.444035 \\ -0.444035 \\ +0.325108 \\ -0.325047 \\ 0.000000\end{array}\right]\)
0.707107 \(-0.707107\)


Temporal partitions:
The eigenvectors describe the placement of the 7 nodes in the 3-dimensional space ( \(\mathrm{x}, \mathrm{y}, \mathrm{t}\) ). E.g. the coordinates of node \(n_{1}=(0.444024,0.707107,0)\), of node \(n_{2}=(0.444024,-0.707107,0)\), etc. From the eigenvector t follows, that there will be three temporal partitions: one for \(t=-0.707107\), the second for \(t=0\) and the third for \(t=0.707107\).

\section*{Answer 3}


\section*{Answer 4}

\section*{Area constraints:}
\(P_{1}: S(1)+S(12)+S(7)+S(4) \leq S(\) device \()\), i.e for P1 of the first partition \(: 10+80+50+25=\) \(165 \leq 150 \rightarrow\) not fulfilled
For \(P_{2}, P_{3}, P_{4}\) of both partitions these constraints must be computed in the same way.

\section*{Terminal constraints:}
\(P_{1}: T(1,9)+T(12,8)+T(4,5)+T(7,3)+T(P I, 1)+T(P I, 7) \leq T(\) device ), i.e for P1 of the first partition : \(8 \times 6=48 \leq 30 \rightarrow\) not fulfilled
For \(P_{2}, P_{3}, P_{4}\) of both partitions these constraints must be computed in the same way.
Unique assignment constraints:
For vertex \(v_{4}\) of the second Partition: \(v_{4}: y_{41}=y_{42}=0, y_{43}=y_{44}=1\),
\(v_{4}: y_{41}+y_{42}+y_{43}+y_{44}=2 \rightarrow\) not fulfilled
All other vertices must be computed in the same way.
Result: Both partitions are illegal, as none of them fulfills all constraints.


\section*{Reconfigurable Computing}

\section*{Solution of Exercise 6}

\section*{Answer 1}
- Component Graph (see Figure 1 and 2):
- For the X-Axis: connect two nodes with an edge, if they are placed in the same column
- For the Y-Axis: connect two nodes with an edge, if they are placed in the same row
- Complement Graph (see Figure 1 and 2):
- Invert the edges of the component graph
- For the X-Axis: This graph shows you the possible left/right neighbours of a node \(v_{i}\)
- For the Y-Axis: This graph shows you the possible upper/lower neighbours of a node \(v_{i}\)


Figure 1: X-Axis: Component and Complement Graph


Figure 2: Y-Axis: Component and Complement Graph

\section*{- Transitive Orientation (see Figure 3)}
- Several possible Solutions
- Has to be cycle-free
- For the X-Axis: Gives the order in X -direction between the different nodes
- For the Y-Axis: Gives the order in y-direction between the different nodes


Figure 3: Transitive Orientations for X - and Y -Axis
- The corresponding placement for the two Transitive Orientations is illustrated in Figure 4.


Figure 4: Corresponding Placement according to the two previously computed transitive orientations
- The given partial ordering does not affect the two dimensional placement. Neither a transitive implication nor a path implication conflict exists.
In the third dimension, component M8 will replace component M1 and component M9 will replace component M6.

\section*{Answer 2}
- Figure 5 shows the computed 8 maximal empty rectangles: A,B,C,D,E,F,G,H
- Figure 6 shows the computed 7 non overlapping empty rectangles:
- Figure 7 shows the computed 11 maximal empty rectangles:
- According to communications, it will be placed as shown in Figure 8: Following the RC lecture the communication aware placement according to the Ahmadinia-Bobda approach can be found by solving the following equation for \(x_{n}\) and \(y_{n}\) :
\[
\begin{equation*}
\min \left\{\sum_{i=1}^{n-1}\left(\left(x_{n}+\frac{w_{n}}{2}-x_{i}-\frac{w_{i}}{2}\right)^{2}+\left(y_{n}+\frac{h_{n}}{2}-y_{i}-\frac{h_{i}}{2}\right)^{2} * w_{i n}\right)\right\} \tag{1}
\end{equation*}
\]

As \(x_{n}\) and \(y_{n}\) are independent from each other the above equation can be split into 2 equations:


Figure 5: 8 maximal empty rectangles


Figure 6: 7 non overlapping empty rectangles
\[
\begin{align*}
& \min \left\{\sum_{i=1}^{n-1}\left(\left(x_{n}+\frac{w_{n}}{2}-x_{i}-\frac{w_{i}}{2}\right)^{2} * w_{i n}\right)\right\}  \tag{2}\\
& \min \left\{\sum_{i=1}^{n-1}\left(\left(y_{n}+\frac{h_{n}}{2}-y_{i}-\frac{h_{i}}{2}\right)^{2} * w_{i n}\right)\right\} \tag{3}
\end{align*}
\]

To find the minima, we have to derivate both functions and set them equal to 0 :
\[
\begin{equation*}
0=\frac{\partial\left\{\sum_{i=1}^{n-1}\left(\left(x_{n}+\frac{w_{n}}{2}-x_{i}-\frac{w_{i}}{2}\right)^{2} * w_{i n}\right)\right\}}{\partial x_{n}} \tag{4}
\end{equation*}
\]


Figure 7: 11 maximal empty rectangles
\[
\begin{equation*}
0=\frac{\partial\left\{\sum_{i=1}^{n-1}\left(\left(y_{n}+\frac{h_{n}}{2}-y_{i}-\frac{h_{i}}{2}\right)^{2} * w_{i n}\right)\right\}}{\partial y_{n}} \tag{5}
\end{equation*}
\]

The resulting equations, which now can be solved for \(x_{n}\) and \(y_{n}\) by inserting the known values for the different \(x_{i}, y_{i}, w_{i}, h_{i}, w_{n}, h_{n}\) and \(w_{i n}\) are:
\[
\begin{align*}
& x_{n}=\frac{\sum_{i=1}^{n-1} w_{i n} *\left(\left(x_{i}+\frac{w_{i}}{2}\right)-\frac{w_{n}}{2}\right)}{\sum_{i=1}^{n-1} w_{i n}}  \tag{6}\\
& y_{n}=\frac{\sum_{i=1}^{n-1} w_{i n} *\left(\left(y_{i}+\frac{h_{i}}{2}\right)-\frac{h_{n}}{2}\right)}{\sum_{i=1}^{n-1} w_{i n}} \tag{7}
\end{align*}
\]

You can solve these equations by inserting the following values:
\[
\text { Center of M3: } x_{3}+\frac{w_{3}}{2}=8, y_{3}+\frac{h_{3}}{2}=11
\]
\[
\text { Center of M5: } x_{5}+\frac{w_{5}}{2}=11, y_{5}+\frac{h_{5}}{2}=7
\]

IO-Pins on the right border: \(x_{a 1}=13, y_{a 1}=10\)
IO-Pins on the upper border: \(x_{a 2}=11, y_{a 2}=13\)
The resulting placement coordinates (bottom left corner of M6) for M6 are:
\[
x_{n}=10, y_{n}=9,25
\]

This coordinate is within M3 and therefore it is an illegal placement. To find the next best placement, we go from this point into the four cardinal points. In the directions north, west and south, no legal placements can be found. However in direction east a legal placement is found on which we can place M6


Figure 8: Placement of M6 according to the Ahmadinia-Bobda-approach```

