
OpenSSL Mini-HOWTO for NetSec

Thomas Schneider
thomaschneider@gmail.com

March 18, 2008

Contents

1 Introduction 2

2 Literature Overview 3

3 OpenSSL command-line 5
3.1 Certificates . 5
3.2 S/MIME . 6

4 OpenSSL API 7
4.1 Basics . 7

4.1.1 PEM . 7
4.2 Certificates . 8

4.2.1 X509 STORE . 9
4.2.2 Certificate verification 9

4.3 Asymmetric Cryptography . 10
4.3.1 PKCS#7 and S/MIME 10
4.3.2 Sign/Verify . 10
4.3.3 Encrypt/Decrypt . 11

4.4 SSL Client/Server . 11
4.4.1 SSL CTX . 11
4.4.2 Server . 14
4.4.3 Client . 16

1

Chapter 1

Introduction

This OpenSSL Mini-HOWTO for NetSec gives a very short summary of the
features of OpenSSL that are needed for the exercise course in network se-
curity [NetSec] at University of Erlangen-Nuremberg [4]. Please read the
following OpenSSL literature for an introduction into OpenSSL and more
detailed information.

2

Chapter 2

Literature Overview

The manual pages give detailed information on the parameters of the OpenSSL
command line functions and libraries:

• openssl(1) [2]: OpenSSL command line tool

• ssl(3) [3]: OpenSSL SSL/TLS library

• crypto(3) [1]: OpenSSL Crypto library

The SSL Certificates HOWTO [6] contains a good introduction into cer-
tificates: contents of a certificate, certification authorities (CA), Root CAs,
certificate management, etc.

The OpenSSL Command-Line HOWTO [5] gives an overview of the pos-
sibilities of the OpenSSL command-line tools.

Working examples for SSL programming including documentation can
be found at [7]: wclient and wserver are basic implementations of a
HTTPS client and server.

A good start into basic SSL programming is [8]: SSL Context Initializa-
tion, Certificate Verification, SSL Client/Server.

Advanced SSL programming techniques that go beyond the scope of a
basic course are in [9]: Advanced SSL programming: SSL sessions, client
authentication, SSL rehandshake, cipher selection, multiplexed I/O.

3

If you still have open questions about OpenSSL or prefer reading a book,
Network Security with OpenSSL [10] is a good choice (available in library or
via Amazon for approximately 20 EUR).

4

Chapter 3

OpenSSL command-line

3.1 Certificates

• Generate symmetrically encrypted 1024 bit RSA key pair:
openssl genrsa -aes128 -out CAkey.pem 1024

• Show RSA key:
openssl rsa -text < CAkey.pem

• Generate self-signed root certificate for RSA key:
openssl req -new -x509 -key CAkey.pem -out CAcert.pem

• Show certificate:
openssl x509 -text < CAcert.pem

• Generate certificate request (CR) for key:
openssl req -new -key key.pem -out req.pem

• Show certificate request:
openssl req -text < req.pem

• Issue certificate by signing CR with CA certificate:
openssl x509 -req -in req.pem -CA CAcert.pem -CAkey CAkey.pem

-CAcreateserial -out cert.pem

5

3.2 S/MIME

• Sign message:
openssl smime -sign -in message.txt -inkey signkey.pem -signer

signcert.pem > signed message.txt

• Encrypt message:
openssl smime -encrypt -aes128 -in message.txt -to hostname of receiver

receivercert.pem > encrypted message.txt

• Sign+Encrypt message (First sign, then encrypt):
openssl smime -sign ...

| openssl smime -encrypt ... (no -in parameter)

> sign enc message.txt

6

Chapter 4

OpenSSL API

4.1 Basics

The following commands must be invoked to initialize the OpenSSL API
correctly.

int SSL library init();

registers the available ciphers and digests. Always returns 1.

void SSL load error strings();

registers the human readable error strings for all libcrypto and libssl func-
tions.

4.1.1 PEM

The PEM functions read or write structures in PEM format. In this sense
PEM format is simply base64 encoded data surrounded by header lines.

EVP PKEY *PEM read PrivateKey(FILE *fp, EVP PKEY **pem password cb

*cb, void *u);

reads a private key from file fp. The cb argument is the callback to use when
querying for the pass phrase used for encrypted PEM private key. If the cb
parameters is set to NULL and the u parameter is not NULL then the u
parameter is interpreted as a null terminated string to use as the passphrase.
If both cb and u are NULL then the default callback routine is used which
will typically prompt for the passphrase on the current terminal with echoing

7

http://www.openssl.org/docs/ssl/SSL_library_init.html
http://www.openssl.org/docs/crypto/ERR_load_crypto_strings.html
http://www.openssl.org/docs/crypto/pem.html

turned off. Returns either a pointer to the structure read or NULL if an error
occurred.

X509 *PEM read X509(FILE *fp, X509 **x, pem password cb *cb, void

*u);

reads an X509 certificate from file fp. The parameters cb and u are similiar
to PEM read PrivateKey. If x is NULL then the parameter is ignored. If
x is not NULL but *x is NULL then the structure returned will be written
to *x. If neither x nor *x is NULL then an attempt is made to reuse the
structure at *x. Irrespective of the value of x a pointer to the structure is
always returned (or NULL if an error occurred).

4.2 Certificates

A certificate can be validated only against a collection of other certificate
material, i.e., CA certificates (and CRLs). OpenSSL uses the object type
X509 STORE to represent a collection of certificates to serve this purpose.
The type X509 STORE CTX is used to hold the data used during an actual
verification. For certificate verification, first create an X509 STORE and
populate it with all the available certificate (and revocation list) information.
This store is used to create an X509 STORE CTX for actual certificate verifi-
cation. An X509 LOOKUP METHOD object represents a general method of
finding certificates (or CRLs), e.g. X509 LOOKUP FILE returns a method
to find certificate-related objects within a single file. X509 LOOKUP ob-
jects aggregate the collection of certificates accessible through the underlying
method.

To review: an X509 STORE holds X509 LOOKUP objects built on X509
LOOKUP METHODS. This is how the store gains access to certificate (and
CRL) data. The store can then be used to create an X509 STORE CTX to
perform a verification operation.

int X509 print fp(FILE *fp, X509 *x);

translates the X509 structure x into human-readable format and writes the
result to the file pointer fp. It returns 1 on success or 0 on error.

8

http://www.openssl.org/docs/crypto/pem.html
http://www.columbia.edu/~ariel/ssleay/x509_certs.html

4.2.1 X509 STORE

X509 STORE *X509 STORE new();

creates a new X509 STORE structure and returns a pointer to it; NULL is
returned on error.

X509 LOOKUP *X509 STORE add lookup(X509 STORE *s,

X509 LOOKUP METHOD *m);

adds the X509 LOOKUP METHOD m to the stack s->get cert methods

after creating an X509 LOOKUP that contains it as a subfield. It returns a
pointer to the new X509 LOOKUP structure or NULL on error.
This can be used to load a certificate from PEM file f as follows:
X509 LOOKUP *lookup;

if(!(lookup = X509 STORE add lookup(s, X509 LOOKUP file()))

|| (X509 LOOKUP load file(lookup, f, X509 FILETYPE PEM)!=1))

// ERROR

4.2.2 Certificate verification

A X509 certificate x509 can be verified against an X509 STORE of trusted
root certificates using the following commands.

X509 STORE CTX *X509 STORE CTX new();

create new X509 STORE CTX.

int X509 STORE CTX init(X509 STORE CTX *ctx, X509 STORE *store,

X509 *x509, STACK OF(X509) *chain); sets all fields of ctx to 0 or NULL
or makes them empty, and then adds in x509 as the certificate to be verified,
chain as the certificate chain to be verified (this can be NULL), and store as
the X509 STORE of trusted certificates and lookup methods for retrieving
them. Returns 1 on success.

int X509 verify cert(X509 STORE CTX *ctx);

checks certificate in initialized X509 STORE CTX ctx. Returns 1 on success.

9

http://www.columbia.edu/~ariel/ssleay/x509_store.html
http://www.columbia.edu/~ariel/ssleay/x509_store.html
http://www.columbia.edu/~ariel/ssleay/x509_store.html
http://www.columbia.edu/~ariel/ssleay/x509_verif_defaults.html

4.3 Asymmetric Cryptography

4.3.1 PKCS#7 and S/MIME

PKCS#7 defines a standard format for data that has had cryptography ap-
plied to it. The Secure Multipurpose Internet Mail Extensions (S/MIME) is
based on PKCS#7 and is a specification for sending secure (signed and/or
encrypted) email. OpenSSL can sign/verify and encrypt/decrypt PKCS#7
messages and allows conversion between PKCS#7 and S/MIME:

PKCS7 *SMIME read PKCS7(BIO *bio, BIO **bcont);

parses a message in S/MIME format. in is a BIO to read the message from.
If cleartext signing is used then the content is saved in a memory bio which is
written to *bcont, otherwise *bcont is set to NULL. The parsed PKCS#7
structure is returned or NULL if an error occurred.

4.3.2 Sign/Verify

PKCS7 *PKCS7 sign(X509 *signcert, EVP PKEY *pkey, STACK OF(X509)

*certs, BIO *data, int flags);

creates and returns a PKCS#7 signedData structure. signcert is the cer-
tificate to sign with, pkey is the corresponsding private key. certs is an
optional additional set of certificates to include in the PKCS#7 structure
(for example any intermediate CAs in the chain). The data to be signed is
read from BIO data. flags is an optional set of flags. Returns either a valid
PKCS7 structure or NULL if an error occurred. The error can be obtained
from ERR get error(3).

int PKCS7 verify(PKCS7 *p7, STACK OF(X509) *certs, X509 STORE *store,

BIO *indata, BIO *out, int flags);

verifies a PKCS#7 signedData structure. p7 is the PKCS7 structure to ver-
ify. certs is a set of certificates in which to search for the signer’s certificate.
store is a trusted certficate store (used for chain verification). indata is
the signed data if the content is not present in p7 (that is it is detached).
The content is written to out if it is not NULL. Returns 1 for a successful
verification and zero or a negative value if an error occurs.

STACK OF(X509) *PKCS7 get0 signers(PKCS7 *p7, STACK OF(X509) *certs,

10

http://www.openssl.org/docs/crypto/SMIME_read_PKCS7.html
http://www.openssl.org/docs/crypto/PKCS7_sign.html
http://www.openssl.org/docs/crypto/PKCS7_verify.html
http://www.openssl.org/docs/crypto/PKCS7_verify.html

int flags);

retrieves the signer’s certificates from p7, it does not check their validity or
whether any signatures are valid. The certs and flags parameters have the
same meanings as in PKCS7 verify(). Returns all signers or NULL if an error
occurred.

4.3.3 Encrypt/Decrypt

PKCS7 *PKCS7 encrypt(STACK OF(X509) *certs, BIO *in, const EVP CIPHER

*cipher, int flags);

creates and returns a PKCS#7 envelopedData structure. certs is a list of
recipient certificates. in is the content to be encrypted. cipher is the sym-
metric cipher to use (recommended: EVP des ede3 cbc() for Triple DES or
EVP aes 256 cbc() for 256 bit AES). flags is an optional set of flags. Re-
turns either a PKCS7 structure or NULL if an error occurred. The error can
be obtained from ERR get error(3).

int PKCS7 decrypt(PKCS7 *p7, EVP PKEY *pkey, X509 *cert, BIO *data,

int flags);

extracts and decrypts the content from a PKCS#7 envelopedData structure.
pkey is the private key of the recipient, cert is the recipients certificate,
data is a BIO to write the content to and flags is an optional set of flags.
Returns either 1 for success or 0 for failure. The error can be obtained from
ERR get error(3).

4.4 SSL Client/Server

The main feature of the OpenSSL library is its implementation of the Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) protocols.

4.4.1 SSL CTX

An SSL CTX object is a factory for producing SSL connection objects. This
context allows to set connection configuration parameters before the connec-
tion is made, such as protocol version, certificate information, and verification

11

http://www.openssl.org/docs/crypto/PKCS7_encrypt.html
http://www.openssl.org/docs/crypto/PKCS7_decrypt.html

requirements.

SSL CTX *SSL CTX new(const SSL METHOD *method);

creates a new SSL CTX object as framework to establish TLS/SSL enabled
connections. The SSL CTX object uses method as connection method. For
maximum compatibility, SSLv23 method() should be used as method. Re-
turns a pointer to the created SSL CTX object or NULL on failure.

The SSL protocol usually requires the server to present a certificate. The
certificate contains credentials that the client may look at to determine if
the server is authentic and can be trusted. The SSL protocol also allows
the client to optionally present certificate information so that the server may
authenticate it.

int SSL CTX use certificate chain file(SSL CTX *ctx, const char

*file);

loads a certificate chain from file into ctx. The certificates must be in PEM
format and must be sorted starting with the subject’s certificate (actual client
or server certificate), followed by intermediate CA certificates if applicable,
and ending at the highest level (root) CA. There is no corresponding function
working on a single SSL object. Returns 1 on success.

In addition to loading the certificate chain, the SSL CTX object must
have the corresponding private key. It bears mentioning that this private
key must be kept secret. Therefore, using an encrypted PEM format for
on-disk storage is recommended; using triple DES in CBC mode or AES-256
is a good choice. OpenSSL collects passphrases through a callback func-
tion. The default callback prompts the user on the terminal. Otherwise,
SSL CTX set default passwd cb allows to set the callback to a user defined
callback function which is invoked during the call to SSL CTX use PrivateKey file
if the indicated file contains an encrypted key. Therefore, the callback should
be set before making that call.

void SSL CTX set default passwd cb(SSL CTX *ctx, pem password cb

*cb);

sets the default password callback called when loading/storing a PEM cer-
tificate with encryption.

12

http://www.openssl.org/docs/ssl/SSL_CTX_new.html
http://www.openssl.org/docs/ssl/SSL_CTX_use_certificate.html
http://www.openssl.org/docs/ssl/SSL_CTX_set_default_passwd_cb.html

int pem passwd cb(char *buf, int size, int rwflag, void *userdata);

hands back the password to be used during decryption. On invocation
a pointer to userdata is provided. The pem passwd cb must write the
password into the provided buffer buf which is of size size. The actual
length of the password must be returned to the calling function. rwflag
indicates whether the callback is used for reading/decryption (rwflag=0) or
writing/encryption (rwflag=1).

int SSL CTX use PrivateKey file(SSL CTX *ctx, const char *file,

int type);

adds the first private key found in file to ctx. The formatting type of the
certificate must be specified from the known types SSL FILETYPE PEM,
SSL FILETYPE ASN1. Returns 1 on success.

In order to verify the certificates, trusted CA certificates must be loaded
into the SSL CTX.

int SSL CTX load verify locations(SSL CTX *ctx, const char *CAfile,

const char *CApath);

specifies the locations for ctx, at which CA certificates for verification pur-
poses are located. The certificates available via CAfile and CApath are
trusted. Returns 1 on success.

void SSL CTX free(SSL CTX *ctx);

frees an allocated SSL CTX object.

Ephemeral keys

When using a cipher with RSA authentication, an ephemeral DH key ex-
change can take place. In this case, the session data are negotiated using
the ephemeral/temporary DH key and the key supplied and certified by the
certificate chain is only used for signing.

Using ephemeral DH key exchange yields forward secrecy, as the connec-
tion can only be decrypted, when the DH key is known. By generating a
temporary DH key inside the server application that is lost when the appli-
cation is left, it becomes impossible for an attacker to decrypt past sessions,
even if he gets hold of the normal (certified) key, as this key was only used

13

http://www.openssl.org/docs/ssl/SSL_CTX_set_default_passwd_cb.html
http://www.openssl.org/docs/ssl/SSL_CTX_use_certificate.html
http://openssl.org/docs/ssl/SSL_CTX_load_verify_locations.html
http://www.openssl.org/docs/ssl/SSL_CTX_free.html

for signing.

In order to perform a DH key exchange the server must use a DH group
(DH parameters) and generate a DH key. The server will always gener-
ate a new DH key during the negotiation, when the DH parameters are
supplied via callback and/or when the SSL OP SINGLE DH USE option of
SSL CTX set options(3) is set. It will immediately create a DH key, when
DH parameters are supplied via SSL CTX set tmp dh() and
SSL OP SINGLE DH USE is not set. In this case, it may happen that a key
is generated on initialization without later being needed, while on the other
hand the computer time during the negotiation is being saved.

As generating DH parameters is extremely time consuming, an applica-
tion should not generate the parameters on the fly but supply the parameters.
An application may either directly specify the DH parameters or can supply
the DH parameters via a callback function. The callback approach has the
advantage, that the callback may supply DH parameters for different key
lengths.

Please contact the manpage of SSL CTX set tmp dh callback for more
details and an example for DH setup.

4.4.2 Server

Server Socket

Accept BIOs are a wrapper round the platform’s TCP/IP socket accept rou-
tines.

BIO *BIO new accept(char *host port);

creates a new accept BIO with port host port.

int BIO do accept(BIO *b);

serves two functions. When it is first called, after the accept BIO has been
setup, it will attempt to create the accept socket and bind an address to
it. Second and subsequent calls to BIO do accept() will await an incoming
connection, or request a retry in non blocking mode.

14

http://openssl.org/docs/ssl/SSL_CTX_set_options.html
http://www.openssl.org/docs/ssl/SSL_CTX_set_tmp_dh_callback.html
http://www.openssl.org/docs/ssl/SSL_CTX_set_tmp_dh_callback.html
http://www.openssl.org/docs/crypto/BIO_s_accept.html
http://www.openssl.org/docs/crypto/BIO_s_accept.html

If a server wishes to process multiple connections (as is normally the case)
then the accept BIO must be made available for further incoming connec-
tions. This can be done by waiting for a connection and then calling:

connection = BIO pop(accept);

After this call connection will contain a BIO for the recently established
connection and accept will now be a single BIO again which can be used to
await further incoming connections. If no further connections will be ac-
cepted the accept can be freed using BIO free().

If only a single connection will be processed it is possible to perform I/O
using the accept BIO itself. This is often undesirable however because the
accept BIO will still accept additional incoming connections. This can be
resolved by using BIO pop() (see above) and freeing up the accept BIO after
the initial connection.

SSL Server Socket

The SSL socket is put into the established TCP/IP socket.

SSL *SSL new(SSL CTX *ctx);

creates a new SSL structure which is needed to hold the data for a TLS/SSL
connection. The new structure inherits the settings of the underlying context
ctx: connection method (SSLv2/v3/TLSv1), options, verification settings,
timeout settings.

void SSL set bio(SSL *ssl, BIO *rbio, BIO *wbio);

connects the BIOs rbio and wbio for the read and write operations of the
TLS/SSL (encrypted) side of ssl. In practice, both rbio and wbio are the
accepted BIO.

int SSL accept(SSL *ssl);

waits for a TLS/SSL client to initiate the TLS/SSL handshake. The com-
munication channel must already have been set and assigned to the ssl by
setting an underlying BIO. Returns 1 on success.

15

http://www.openssl.org/docs/crypto/BIO_push.html
http://openssl.org/docs/crypto/BIO_new.html
http://www.openssl.org/docs/ssl/SSL_new.html
http://openssl.org/docs/ssl/SSL_set_bio.html
http://www.openssl.org/docs/ssl/SSL_accept.html

After the SSL socket was sucessfully accepted, it can be used for I/O:

int SSL read(SSL *ssl, void *buf, int num);

tries to read num bytes from the specified ssl into the buffer buf. Returns
the number of bytes actually read from the TLS/SSL connection, 0 on shut-
down or <0 on error.

int SSL write(SSL *ssl, const void *buf, int num);

writes num bytes from the buffer buf into the specified ssl connection. Re-
turns the number of bytes actually written to the TLS/SSL connection, 0 on
shutdown or <0 on error.

In the end, the SSL connection is shut down and cleared for further con-
nections or finally destroyed.

int SSL shutdown(SSL *ssl);

shuts down an active TLS/SSL connection. Returns 1 on success, 0 on retry
and -1 on error.

int SSL clear(SSL *ssl);

reset SSL object to allow another connection. All settings (method, ciphers,
BIOs) are kept. Returns 1 on success.

void SSL free(SSL *ssl);

frees an allocated SSL structure.

4.4.3 Client

Client Socket

Connect BIOs are a wrapper round the platform’s TCP/IP socket connect
routines.

BIO *BIO new connect(char *name);

creates a new connect BIO with host name. The hostname can be an IP
address. The hostname can also include the port in the form hostname:port
. It is also acceptable to use the form “hostname/any/other/path” or “host-
name:port/any/other/path”.

16

http://www.openssl.org/docs/ssl/SSL_read.html
http://www.openssl.org/docs/ssl/SSL_write.html
http://www.openssl.org/docs/ssl/SSL_shutdown.html
http://www.openssl.org/docs/ssl/SSL_clear.html
http://www.openssl.org/docs/ssl/SSL_free.html
http://openssl.org/docs/crypto/BIO_s_connect.html

int BIO do connect(BIO *b);

attempts to connect the supplied BIO. It returns 1 if the connection was
established successfully. A zero or negative value is returned if the connection
could not be established.

Client SSL Socket

The SSL socket is put into the established TCP/IP socket.

SSL new and SSL set bio are used as described before.

int SSL connect(SSL *ssl);

initiates the TLS/SSL handshake with a server. The communication channel
must already have been set and assigned to the ssl by setting an underlying
BIO. Returns 1 on success, 0 on retry and <0 on error.

After the SSL socket was successfully accepted, the server certificate must
be verified.

X509 *SSL get peer certificate(const SSL *ssl);

returns a pointer to the X509 certificate the peer presented. If the peer did
not present a certificate, NULL is returned.

The subject of the certificate should be equal to the hostname:
X509 NAME *subj;

if((subj = X509 get subject name(cert))

&& X509 NAME get text by NID(subj, NID commonName, data, 256) > 0)

{
data[255] = 0;

if(strcasecmp(data,host) != 0) // ERROR

}

long SSL get verify result(const SSL *ssl);

returns the result of the verification of the X509 certificate presented by the
peer, if any. Can only return one error code while the verification of a cer-
tificate can fail because of many reasons at the same time. Only the last
verification error that occurred during the processing is available. Returns

17

http://openssl.org/docs/crypto/BIO_s_connect.html
http://www.openssl.org/docs/ssl/SSL_new.html
http://openssl.org/docs/ssl/SSL_set_bio.html
http://www.openssl.org/docs/ssl/SSL_connect.html
http://openssl.linux-mirror.org/docs/ssl/SSL_get_peer_certificate.html
http://www.openssl.org/docs/ssl/SSL_get_verify_result.html

X509 V OK on success or any other value on failure. The other return
values are documented in verify(1). Some of the most relevant are:
X509 V ERR CERT SIGNATURE FAILURE - the signature of the
certificate is invalid,
X509 V ERR CERT HAS EXPIRED - the certificate has expired,
X509 V ERR DEPTH ZERO SELF SIGNED CERT - the passed cer-
tificate is self signed and the same certificate cannot be found in the list of
trusted certificates,
X509 V ERR SELF SIGNED CERT IN CHAIN - the certificate chain
could be built up using the untrusted certificates but the root could not be
found locally,
X509 V ERR INVALID CA - a CA certificate is invalid. Either it is not
a CA or its extensions are not consistent with the supplied purpose, ...

After the server’s certificate chain was checked successfully, the SSL socket
can be used for I/O using SSL read and SSL write as described before.

In the end, the SSL connection is shut down (SSL shutdown) and cleared
for further connections (SSL clear) or finally destroyed (SSL free) as de-
scribed before .

18

http://www.openssl.org/docs/apps/verify.html
http://www.openssl.org/docs/ssl/SSL_read.html
http://www.openssl.org/docs/ssl/SSL_write.html
http://www.openssl.org/docs/ssl/SSL_shutdown.html
http://www.openssl.org/docs/ssl/SSL_clear.html
http://www.openssl.org/docs/ssl/SSL_free.html

Bibliography

[1] OpenSSL manual pages - crypto(3).
http://www.openssl.org/docs/crypto/crypto.html.

[2] OpenSSL manual pages - openssl(1).
http://www.openssl.org/docs/apps/openssl.html.

[3] OpenSSL manual pages - ssl(3).
http://www.openssl.org/docs/ssl/ssl.html.

[4] Falko Dressler. Netzwerksicherheit [NetSec].
http://www7.informatik.uni-erlangen.de/∼dressler/lectures/

netzwerksicherheit/.

[5] Paul Heinlein. OpenSSL Command-Line HOWTO, Jun 2004.
http://www.madboa.com/geek/openssl/.

[6] Franck Martin. SSL Certificates HOWTO.
http://www.gtlib.cc.gatech.edu/pub/linux/docs/HOWTO/

other-formats/html single/SSL-Certificates-HOWTO.html.

[7] Eric Rescorla. OpenSSL Examples.
http://www.rtfm.com/openssl-examples/.

[8] Eric Rescorla. An Introduction to OpenSSL Programming (Part I), Oct
2001.
http://www.rtfm.com/openssl-examples/part1.pdf.

[9] Eric Rescorla. An Introduction to OpenSSL Programming (Part II),
Jan 2002.
http://www.rtfm.com/openssl-examples/part2.pdf.

19

http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/apps/openssl.html
http://www.openssl.org/docs/ssl/ssl.html
http://www7.informatik.uni-erlangen.de/~dressler/lectures/netzwerksicherheit/
http://www7.informatik.uni-erlangen.de/~dressler/lectures/netzwerksicherheit/
http://www.madboa.com/geek/openssl/
http://www.gtlib.cc.gatech.edu/pub/linux/docs/HOWTO/other-formats/html_single/SSL-Certificates-HOWTO.html
http://www.gtlib.cc.gatech.edu/pub/linux/docs/HOWTO/other-formats/html_single/SSL-Certificates-HOWTO.html
http://www.rtfm.com/openssl-examples/
http://www.rtfm.com/openssl-examples/part1.pdf
http://www.rtfm.com/openssl-examples/part2.pdf

[10] Jon Viega, Pravir Chandra, and Matt Messier. Network Security with
Openssl. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.
http://www.opensslbook.com

http://www.oreilly.com/catalog/openssl/.

20

http://www.opensslbook.com
http://www.oreilly.com/catalog/openssl/

	Introduction
	Literature Overview
	OpenSSL command-line
	Certificates
	S/MIME

	OpenSSL API
	Basics
	PEM

	Certificates
	X509_STORE
	Certificate verification

	Asymmetric Cryptography
	PKCS#7 and S/MIME
	Sign/Verify
	Encrypt/Decrypt

	SSL Client/Server
	SSL_CTX
	Server
	Client

